IDEAS home Printed from https://ideas.repec.org/a/eee/transb/v90y2016icp135-155.html
   My bibliography  Save this article

Liner container assignment model with transit-time-sensitive container shipment demand and its applicationsAuthor-Name: Wang, Shuaian

Author

Listed:
  • Meng, Qiang
  • Lee, Chung-Yee

Abstract

This paper proposes a practical tactical-level liner container assignment model for liner shipping companies, in which the container shipment demand is a non-increasing function of the transit time. Given the transit-time-sensitive demand, the model aims to determine which proportion of the demand to fulfill and how to transport these containers in a liner shipping network to maximize the total profit. Although the proposed model is similar to multi-commodity network-flow (MCNF) with side constraints, unlike the MCNF with time delay constraints or reliability constraints that is NP-hard, we show that the liner container assignment model is polynomially solvable due to its weekly schedule characteristics by developing two link-based linear programing formulations. A number of practical extensions and applications are analyzed and managerial insights are discussed. The polynomially solvable liner container assignment model is then applied to address several important decision problems proposed by a global liner shipping company.

Suggested Citation

  • Meng, Qiang & Lee, Chung-Yee, 2016. "Liner container assignment model with transit-time-sensitive container shipment demand and its applicationsAuthor-Name: Wang, Shuaian," Transportation Research Part B: Methodological, Elsevier, vol. 90(C), pages 135-155.
  • Handle: RePEc:eee:transb:v:90:y:2016:i:c:p:135-155
    DOI: 10.1016/j.trb.2016.04.014
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0191261515300709
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.trb.2016.04.014?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wang, Shuaian, 2014. "A novel hybrid-link-based container routing model," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 61(C), pages 165-175.
    2. Wang, Shuaian, 2013. "Essential elements in tactical planning models for container liner shipping," Transportation Research Part B: Methodological, Elsevier, vol. 54(C), pages 84-99.
    3. Kaj Holmberg & Di Yuan, 2003. "A Multicommodity Network-Flow Problem with Side Constraints on Paths Solved by Column Generation," INFORMS Journal on Computing, INFORMS, vol. 15(1), pages 42-57, February.
    4. Gamst, Mette & Neergaard Jensen, Peter & Pisinger, David & Plum, Christian, 2010. "Two- and three-index formulations of the minimum cost multicommodity k-splittable flow problem," European Journal of Operational Research, Elsevier, vol. 202(1), pages 82-89, April.
    5. Marielle Christiansen & Kjetil Fagerholt & David Ronen, 2004. "Ship Routing and Scheduling: Status and Perspectives," Transportation Science, INFORMS, vol. 38(1), pages 1-18, February.
    6. Song, Dong-Ping & Dong, Jing-Xin, 2012. "Cargo routing and empty container repositioning in multiple shipping service routes," Transportation Research Part B: Methodological, Elsevier, vol. 46(10), pages 1556-1575.
    7. Mulder, Judith & Dekker, Rommert, 2014. "Methods for strategic liner shipping network design," European Journal of Operational Research, Elsevier, vol. 235(2), pages 367-377.
    8. Christiansen, Marielle & Fagerholt, Kjetil & Nygreen, Bjørn & Ronen, David, 2013. "Ship routing and scheduling in the new millennium," European Journal of Operational Research, Elsevier, vol. 228(3), pages 467-483.
    9. Wang, Yadong & Meng, Qiang & Du, Yuquan, 2015. "Liner container seasonal shipping revenue management," Transportation Research Part B: Methodological, Elsevier, vol. 82(C), pages 141-161.
    10. Wang, Shuaian & Meng, Qiang, 2013. "Reversing port rotation directions in a container liner shipping network," Transportation Research Part B: Methodological, Elsevier, vol. 50(C), pages 61-73.
    11. Jianfeng Zheng & Ziyou Gao & Dong Yang & Zhuo Sun, 2015. "Network Design and Capacity Exchange for Liner Alliances with Fixed and Variable Container Demands," Transportation Science, INFORMS, vol. 49(4), pages 886-899, November.
    12. Bell, Michael G.H. & Liu, Xin & Rioult, Jeremy & Angeloudis, Panagiotis, 2013. "A cost-based maritime container assignment model," Transportation Research Part B: Methodological, Elsevier, vol. 58(C), pages 58-70.
    13. Richa Agarwal & Özlem Ergun, 2008. "Ship Scheduling and Network Design for Cargo Routing in Liner Shipping," Transportation Science, INFORMS, vol. 42(2), pages 175-196, May.
    14. Dong, Jing-Xin & Lee, Chung-Yee & Song, Dong-Ping, 2015. "Joint service capacity planning and dynamic container routing in shipping network with uncertain demands," Transportation Research Part B: Methodological, Elsevier, vol. 78(C), pages 404-421.
    15. Wang, Shuaian & Meng, Qiang & Liu, Zhiyuan, 2013. "Containership scheduling with transit-time-sensitive container shipment demand," Transportation Research Part B: Methodological, Elsevier, vol. 54(C), pages 68-83.
    16. Qiang Meng & Shuaian Wang & Henrik Andersson & Kristian Thun, 2014. "Containership Routing and Scheduling in Liner Shipping: Overview and Future Research Directions," Transportation Science, INFORMS, vol. 48(2), pages 265-280, May.
    17. Wang, Shuaian & Liu, Zhiyuan & Meng, Qiang, 2015. "Segment-based alteration for container liner shipping network design," Transportation Research Part B: Methodological, Elsevier, vol. 72(C), pages 128-145.
    18. Bell, Michael G.H. & Liu, Xin & Angeloudis, Panagiotis & Fonzone, Achille & Hosseinloo, Solmaz Haji, 2011. "A frequency-based maritime container assignment model," Transportation Research Part B: Methodological, Elsevier, vol. 45(8), pages 1152-1161, September.
    19. Kuntal K. Saha & Masum Billah & Purnima Menon & Shams El Arifeen & Nkosinathi V.N. Mbuya, 2015. "Bangladesh National Nutrition Services," World Bank Publications - Books, The World Bank Group, number 22377, December.
    20. Karsten, Christian Vad & Pisinger, David & Ropke, Stefan & Brouer, Berit Dangaard, 2015. "The time constrained multi-commodity network flow problem and its application to liner shipping network design," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 76(C), pages 122-138.
    21. Theo E Notteboom, 2006. "The Time Factor in Liner Shipping Services," Maritime Economics & Logistics, Palgrave Macmillan;International Association of Maritime Economists (IAME), vol. 8(1), pages 19-39, March.
    22. Akyüz, M. Hakan & Lee, Chung-Yee, 2016. "Service type assignment and container routing with transit time constraints and empty container repositioning for liner shipping service networks," Transportation Research Part B: Methodological, Elsevier, vol. 88(C), pages 46-71.
    23. Wang, Shuaian & Liu, Zhiyuan & Bell, Michael G.H., 2015. "Profit-based maritime container assignment models for liner shipping networks," Transportation Research Part B: Methodological, Elsevier, vol. 72(C), pages 59-76.
    24. Richa Agarwal & Özlem Ergun, 2010. "Network Design and Allocation Mechanisms for Carrier Alliances in Liner Shipping," Operations Research, INFORMS, vol. 58(6), pages 1726-1742, December.
    25. Dobrivskyy T., 2015. "State policy in administrative services," Management, Academy of Municipal Administration, vol. 10(2), pages 58-67, April.
    26. Ng, ManWo, 2015. "Container vessel fleet deployment for liner shipping with stochastic dependencies in shipping demand," Transportation Research Part B: Methodological, Elsevier, vol. 74(C), pages 79-87.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Balakrishnan, Anantaram & Karsten, Christian Vad, 2017. "Container shipping service selection and cargo routing with transshipment limits," European Journal of Operational Research, Elsevier, vol. 263(2), pages 652-663.
    2. Zhang, Ruiyou & Zhao, Haishu & Moon, Ilkyeong, 2018. "Range-based truck-state transition modeling method for foldable container drayage services," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 118(C), pages 225-239.
    3. Wang, Tingsong & Meng, Qiang & Wang, Shuaian & Qu, Xiaobo, 2021. "A two-stage stochastic nonlinear integer-programming model for slot allocation of a liner container shipping service," Transportation Research Part B: Methodological, Elsevier, vol. 150(C), pages 143-160.
    4. Zhen, Lu & Wang, Shuaian & Zhuge, Dan, 2017. "Analysis of three container routing strategies," International Journal of Production Economics, Elsevier, vol. 193(C), pages 259-271.
    5. E. Zhang & Feng Chu & Shijin Wang & Ming Liu & Yang Sui, 0. "Approximation approach for robust vessel fleet deployment problem with ambiguous demands," Journal of Combinatorial Optimization, Springer, vol. 0, pages 1-15.
    6. Trivella, Alessio & Corman, Francesco & Koza, David F. & Pisinger, David, 2021. "The multi-commodity network flow problem with soft transit time constraints: Application to liner shipping," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 150(C).
    7. E. Zhang & Feng Chu & Shijin Wang & Ming Liu & Yang Sui, 2022. "Approximation approach for robust vessel fleet deployment problem with ambiguous demands," Journal of Combinatorial Optimization, Springer, vol. 44(4), pages 2180-2194, November.
    8. Zhijia Tan & Yadong Wang & Qiang Meng & Zhixue Liu, 2018. "Joint Ship Schedule Design and Sailing Speed Optimization for a Single Inland Shipping Service with Uncertain Dam Transit Time," Service Science, INFORMS, vol. 52(6), pages 1570-1588, December.
    9. Wang, Yadong & Gu, Yuyun & Wang, Tingsong & Zhang, Jun, 2022. "A risk-averse approach for joint contract selection and slot allocation in liner container shipping," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 164(C).
    10. Fernández, Elena & Munoz-Marquez, Manuel, 2022. "New formulations and solutions for the strategic berth template problem," European Journal of Operational Research, Elsevier, vol. 298(1), pages 99-117.
    11. Reinhardt, Line Blander & Pisinger, David & Sigurd, Mikkel M. & Ahmt, Jonas, 2020. "Speed optimizations for liner networks with business constraints," European Journal of Operational Research, Elsevier, vol. 285(3), pages 1127-1140.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lee, Chung-Yee & Song, Dong-Ping, 2017. "Ocean container transport in global supply chains: Overview and research opportunities," Transportation Research Part B: Methodological, Elsevier, vol. 95(C), pages 442-474.
    2. Nguyen Khoi Tran & Hans-Dietrich Haasis & Tobias Buer, 2017. "Container shipping route design incorporating the costs of shipping, inland/feeder transport, inventory and CO2 emission," Maritime Economics & Logistics, Palgrave Macmillan;International Association of Maritime Economists (IAME), vol. 19(4), pages 667-694, December.
    3. Wang, Shuaian & Liu, Zhiyuan & Bell, Michael G.H., 2015. "Profit-based maritime container assignment models for liner shipping networks," Transportation Research Part B: Methodological, Elsevier, vol. 72(C), pages 59-76.
    4. Wang, Shuaian, 2014. "A novel hybrid-link-based container routing model," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 61(C), pages 165-175.
    5. Akyüz, M. Hakan & Lee, Chung-Yee, 2016. "Service type assignment and container routing with transit time constraints and empty container repositioning for liner shipping service networks," Transportation Research Part B: Methodological, Elsevier, vol. 88(C), pages 46-71.
    6. Zheng, Jianfeng & Sun, Zhuo & Zhang, Fangjun, 2016. "Measuring the perceived container leasing prices in liner shipping network design with empty container repositioning," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 94(C), pages 123-140.
    7. Chen, Jingxu & Jia, Shuai & Wang, Shuaian & Liu, Zhiyuan, 2018. "Subloop-based reversal of port rotation directions for container liner shipping network alteration," Transportation Research Part B: Methodological, Elsevier, vol. 118(C), pages 336-361.
    8. Wang, Yadong & Meng, Qiang, 2021. "Optimizing freight rate of spot market containers with uncertainties in shipping demand and available ship capacity," Transportation Research Part B: Methodological, Elsevier, vol. 146(C), pages 314-332.
    9. Zheng, Jianfeng & Sun, Zhuo & Gao, Ziyou, 2015. "Empty container exchange among liner carriers," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 83(C), pages 158-169.
    10. Wang, Shuaian, 2015. "Optimal sequence of container ships in a string," European Journal of Operational Research, Elsevier, vol. 246(3), pages 850-857.
    11. Wang, Hua & Wang, Shuaian & Meng, Qiang, 2014. "Simultaneous optimization of schedule coordination and cargo allocation for liner container shipping networks," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 70(C), pages 261-273.
    12. Wang, Shuaian & Liu, Zhiyuan & Meng, Qiang, 2015. "Segment-based alteration for container liner shipping network design," Transportation Research Part B: Methodological, Elsevier, vol. 72(C), pages 128-145.
    13. Gang Du & Chuanwang Sun & Jinxian Weng, 2016. "Liner Shipping Fleet Deployment with Sustainable Collaborative Transportation," Sustainability, MDPI, vol. 8(2), pages 1-15, February.
    14. David F. Koza & Guy Desaulniers & Stefan Ropke, 2020. "Integrated Liner Shipping Network Design and Scheduling," Transportation Science, INFORMS, vol. 54(2), pages 512-533, March.
    15. Zheng, Jianfeng & Qi, Jingwen & Sun, Zhuo & Li, Feng, 2018. "Community structure based global hub location problem in liner shipping," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 118(C), pages 1-19.
    16. Balakrishnan, Anantaram & Karsten, Christian Vad, 2017. "Container shipping service selection and cargo routing with transshipment limits," European Journal of Operational Research, Elsevier, vol. 263(2), pages 652-663.
    17. Du, Yuquan & Meng, Qiang & Wang, Shuaian & Kuang, Haibo, 2019. "Two-phase optimal solutions for ship speed and trim optimization over a voyage using voyage report data," Transportation Research Part B: Methodological, Elsevier, vol. 122(C), pages 88-114.
    18. Liu, Zhiyuan & Meng, Qiang & Wang, Shuaian & Sun, Zhuo, 2014. "Global intermodal liner shipping network design," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 61(C), pages 28-39.
    19. Zhen, Lu & Hu, Yi & Wang, Shuaian & Laporte, Gilbert & Wu, Yiwei, 2019. "Fleet deployment and demand fulfillment for container shipping liners," Transportation Research Part B: Methodological, Elsevier, vol. 120(C), pages 15-32.
    20. Lai, Xiaofan & Wu, Lingxiao & Wang, Kai & Wang, Fan, 2022. "Robust ship fleet deployment with shipping revenue management," Transportation Research Part B: Methodological, Elsevier, vol. 161(C), pages 169-196.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transb:v:90:y:2016:i:c:p:135-155. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/548/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.