IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v202y2010i1p82-89.html
   My bibliography  Save this article

Two- and three-index formulations of the minimum cost multicommodity k-splittable flow problem

Author

Listed:
  • Gamst, Mette
  • Neergaard Jensen, Peter
  • Pisinger, David
  • Plum, Christian

Abstract

The multicommodity flow problem (MCFP) considers the efficient routing of commodities from their origins to their destinations subject to capacity restrictions and edge costs. Baier et al. [G. Baier, E. Köhler, M. Skutella, On the k-splittable flow problem, in: 10th Annual European Symposium on Algorithms, 2002, 101-113] introduced the maximum flow multicommodity k-splittable flow problem (MCkFP) where each commodity may use at most k paths between its origin and its destination. This paper studies the -hard minimum cost multicommodity k-splittable flow problem (MCMCkFP) in which a given flow of commodities has to be satisfied at the lowest possible cost. The problem has applications in transportation problems where a number of commodities must be routed, using a limited number of distinct transportation units for each commodity. Based on a three-index formulation by Truffot et al. [J. Truffot, C. Duhamel, P. Mahey, Branch and price pour le problème du multiflot k-séparable de coût minimal, in: LIMOS, UMR 6158 - CNRS, ROADEF'05, 2005] we present a new two-index formulation for the problem, and solve both formulations through branch-and-price. The three-index algorithm by Truffot et al. is improved by introducing a simple heuristic method to reach a feasible solution by eliminating some symmetry. A novel branching strategy for the two-index formulation is presented, forbidding subpaths in the branching children. Though the proposed heuristic for the three-index algorithm improves its performance, the three-index algorithm is still outperformed by the two-index algorithm, both with respect to running time and to the number of solved test instances.

Suggested Citation

  • Gamst, Mette & Neergaard Jensen, Peter & Pisinger, David & Plum, Christian, 2010. "Two- and three-index formulations of the minimum cost multicommodity k-splittable flow problem," European Journal of Operational Research, Elsevier, vol. 202(1), pages 82-89, April.
  • Handle: RePEc:eee:ejores:v:202:y:2010:i:1:p:82-89
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377-2217(09)00318-X
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. L. R. Ford, Jr. & D. R. Fulkerson, 1958. "A Suggested Computation for Maximal Multi-Commodity Network Flows," Management Science, INFORMS, vol. 5(1), pages 97-101, October.
    2. Cynthia Barnhart & Christopher A. Hane & Pamela H. Vance, 2000. "Using Branch-and-Price-and-Cut to Solve Origin-Destination Integer Multicommodity Flow Problems," Operations Research, INFORMS, vol. 48(2), pages 318-326, April.
    3. Villeneuve, Daniel & Desaulniers, Guy, 2005. "The shortest path problem with forbidden paths," European Journal of Operational Research, Elsevier, vol. 165(1), pages 97-107, August.
    4. George B. Dantzig & Philip Wolfe, 1960. "Decomposition Principle for Linear Programs," Operations Research, INFORMS, vol. 8(1), pages 101-111, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Meng, Qiang & Lee, Chung-Yee, 2016. "Liner container assignment model with transit-time-sensitive container shipment demand and its applicationsAuthor-Name: Wang, Shuaian," Transportation Research Part B: Methodological, Elsevier, vol. 90(C), pages 135-155.
    2. Melchiori, Anna & Sgalambro, Antonino, 2020. "A branch and price algorithm to solve the Quickest Multicommodity k-splittable Flow Problem," European Journal of Operational Research, Elsevier, vol. 282(3), pages 846-857.
    3. Wang, Shuaian, 2014. "A novel hybrid-link-based container routing model," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 61(C), pages 165-175.
    4. Gamst, M. & Petersen, B., 2012. "Comparing branch-and-price algorithms for the Multi-Commodity k-splittable Maximum Flow Problem," European Journal of Operational Research, Elsevier, vol. 217(2), pages 278-286.
    5. Khodakaram Salimifard & Sara Bigharaz, 2022. "The multicommodity network flow problem: state of the art classification, applications, and solution methods," Operational Research, Springer, vol. 22(1), pages 1-47, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Paul A. Chircop & Timothy J. Surendonk & Menkes H. L. van den Briel & Toby Walsh, 2022. "On routing and scheduling a fleet of resource-constrained vessels to provide ongoing continuous patrol coverage," Annals of Operations Research, Springer, vol. 312(2), pages 723-760, May.
    2. Gamst, M. & Petersen, B., 2012. "Comparing branch-and-price algorithms for the Multi-Commodity k-splittable Maximum Flow Problem," European Journal of Operational Research, Elsevier, vol. 217(2), pages 278-286.
    3. Khodakaram Salimifard & Sara Bigharaz, 2022. "The multicommodity network flow problem: state of the art classification, applications, and solution methods," Operational Research, Springer, vol. 22(1), pages 1-47, March.
    4. de Lima, Vinícius L. & Alves, Cláudio & Clautiaux, François & Iori, Manuel & Valério de Carvalho, José M., 2022. "Arc flow formulations based on dynamic programming: Theoretical foundations and applications," European Journal of Operational Research, Elsevier, vol. 296(1), pages 3-21.
    5. Ashwin Arulselvan & Mohsen Rezapour, 2017. "Exact Approaches for Designing Multifacility Buy-at-Bulk Networks," INFORMS Journal on Computing, INFORMS, vol. 29(4), pages 597-611, November.
    6. Yao, Yu & Zhu, Xiaoning & Dong, Hongyu & Wu, Shengnan & Wu, Hailong & Carol Tong, Lu & Zhou, Xuesong, 2019. "ADMM-based problem decomposition scheme for vehicle routing problem with time windows," Transportation Research Part B: Methodological, Elsevier, vol. 129(C), pages 156-174.
    7. Jie, Wanchen & Yang, Jun & Zhang, Min & Huang, Yongxi, 2019. "The two-echelon capacitated electric vehicle routing problem with battery swapping stations: Formulation and efficient methodology," European Journal of Operational Research, Elsevier, vol. 272(3), pages 879-904.
    8. Zhu, Wenbin & Huang, Weili & Lim, Andrew, 2012. "A prototype column generation strategy for the multiple container loading problem," European Journal of Operational Research, Elsevier, vol. 223(1), pages 27-39.
    9. Fabio Vitor & Todd Easton, 2018. "The double pivot simplex method," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 87(1), pages 109-137, February.
    10. Ahmadi-Javid, Amir & Amiri, Elahe & Meskar, Mahla, 2018. "A Profit-Maximization Location-Routing-Pricing Problem: A Branch-and-Price Algorithm," European Journal of Operational Research, Elsevier, vol. 271(3), pages 866-881.
    11. Desaulniers, G. & Desrosiers, J. & Dumas, Y. & Marc, S. & Rioux, B. & Solomon, M. M. & Soumis, F., 1997. "Crew pairing at Air France," European Journal of Operational Research, Elsevier, vol. 97(2), pages 245-259, March.
    12. Jans, Raf, 2010. "Classification of Dantzig-Wolfe reformulations for binary mixed integer programming problems," European Journal of Operational Research, Elsevier, vol. 204(2), pages 251-254, July.
    13. Daniel Villeneuve & Jacques Desrosiers & Marco Lübbecke & François Soumis, 2005. "On Compact Formulations for Integer Programs Solved by Column Generation," Annals of Operations Research, Springer, vol. 139(1), pages 375-388, October.
    14. Yu Zhou & Leishan Zhou & Yun Wang & Xiaomeng Li & Zhuo Yang, 2017. "A practical model for the train-set utilization: The case of Beijing-Tianjin passenger dedicated line in China," PLOS ONE, Public Library of Science, vol. 12(5), pages 1-24, May.
    15. Riera-Ledesma, Jorge & Salazar-González, Juan José, 2017. "Solving the Team Orienteering Arc Routing Problem with a column generation approach," European Journal of Operational Research, Elsevier, vol. 262(1), pages 14-27.
    16. Borzou Rostami & Guy Desaulniers & Fausto Errico & Andrea Lodi, 2021. "Branch-Price-and-Cut Algorithms for the Vehicle Routing Problem with Stochastic and Correlated Travel Times," Operations Research, INFORMS, vol. 69(2), pages 436-455, March.
    17. Tian, Xiaopeng & Niu, Huimin, 2020. "Optimization of demand-oriented train timetables under overtaking operations: A surrogate-dual-variable column generation for eliminating indivisibility," Transportation Research Part B: Methodological, Elsevier, vol. 142(C), pages 143-173.
    18. David R. Morrison & Edward C. Sewell & Sheldon H. Jacobson, 2016. "Solving the Pricing Problem in a Branch-and-Price Algorithm for Graph Coloring Using Zero-Suppressed Binary Decision Diagrams," INFORMS Journal on Computing, INFORMS, vol. 28(1), pages 67-82, February.
    19. Timo Gschwind & Stefan Irnich, 2016. "Dual Inequalities for Stabilized Column Generation Revisited," INFORMS Journal on Computing, INFORMS, vol. 28(1), pages 175-194, February.
    20. de Matta, Renato & Peters, Emmanuel, 2009. "Developing work schedules for an inter-city transit system with multiple driver types and fleet types," European Journal of Operational Research, Elsevier, vol. 192(3), pages 852-865, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:202:y:2010:i:1:p:82-89. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.