IDEAS home Printed from https://ideas.repec.org/a/eee/transb/v108y2018icp281-298.html
   My bibliography  Save this article

Co-opetition in enhancing global port network resiliency: A multi-leader, common-follower game theoretic approach

Author

Listed:
  • Asadabadi, Ali
  • Miller-Hooks, Elise

Abstract

Ports are key elements of global supply chains, providing connection between land- and maritime-based transportation modes. They operate in cooperative, but competitive, co-opetitive, environments wherein individual port throughput is linked through an underlying transshipment network. Short-term port performance and long-term market share can be significantly impacted by a disaster event; thus, ports plan to invest in capacity expansion and protective measures to increase their reliability or resiliency in times of disruption. To account for the co-opetition among ports, a bi-level multiplayer game theoretic approach is used, wherein each individual port takes protective investment decisions while anticipating the response of the common market-clearing shipping assignment problem in the impacted network. This lower-level assignment is modeled as a cost minimization problem, which allows for consideration of gains and losses from other ports decisions through changes in port and service capacities and port cargo handling times. Linear properties of the lower-level formulation permit reformulation of the individual port bi-level optimization problems as single-level problems by replacing the common lower-level by its equivalent Karush Kuhn Tucker (KKT) conditions. Simultaneous consideration of individual port optimization problems creates a multi-leader, common-follower problem, i.e. an unrestricted game, that is modeled as an Equilibrium Problem with Equilibrium Constraints (EPEC). Equilibria solutions are sought by use of a diagonalization technique. Solutions of unrestricted, semi-restricted and restricted games are analyzed and compared for a hypothetical application from the literature involving ports in East Asia and Europe. The proposed co-opetitive approach was found to lead to increased served total demand, significantly increased market share for many ports and improved services for shippers.

Suggested Citation

  • Asadabadi, Ali & Miller-Hooks, Elise, 2018. "Co-opetition in enhancing global port network resiliency: A multi-leader, common-follower game theoretic approach," Transportation Research Part B: Methodological, Elsevier, vol. 108(C), pages 281-298.
  • Handle: RePEc:eee:transb:v:108:y:2018:i:c:p:281-298
    DOI: 10.1016/j.trb.2018.01.004
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0191261517307555
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.trb.2018.01.004?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Steven A. Gabriel & Antonio J. Conejo & J. David Fuller & Benjamin F. Hobbs & Carlos Ruiz, 2013. "Complementarity Modeling in Energy Markets," International Series in Operations Research and Management Science, Springer, edition 127, number 978-1-4419-6123-5, December.
    2. Shafieezadeh, Abdollah & Ivey Burden, Lindsay, 2014. "Scenario-based resilience assessment framework for critical infrastructure systems: Case study for seismic resilience of seaports," Reliability Engineering and System Safety, Elsevier, vol. 132(C), pages 207-219.
    3. Liying Song & Dong Yang & Anthony Theng Heng Chin & Guangzhi Zhang & Zhengbing He & Wei Guan & Baohua Mao, 2016. "A game-theoretical approach for modeling competitions in a maritime supply chain," Maritime Policy & Management, Taylor & Francis Journals, vol. 43(8), pages 976-991, November.
    4. Ishii, Masahiro & Lee, Paul Tae-Woo & Tezuka, Koichiro & Chang, Young-Tae, 2013. "A game theoretical analysis of port competition," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 49(1), pages 92-106.
    5. Weifen Zhuang & Meifeng Luo & Xiaowen Fu, 2014. "A game theory analysis of port specialization-implications to the Chinese port industry," Maritime Policy & Management, Taylor & Francis Journals, vol. 41(3), pages 268-287, May.
    6. Brooks Mary R., 2004. "The Governance Structure of Ports," Review of Network Economics, De Gruyter, vol. 3(2), pages 1-16, June.
    7. William Ho & Tian Zheng & Hakan Yildiz & Srinivas Talluri, 2015. "Supply chain risk management: a literature review," International Journal of Production Research, Taylor & Francis Journals, vol. 53(16), pages 5031-5069, August.
    8. Austin Becker & Satoshi Inoue & Martin Fischer & Ben Schwegler, 2012. "Climate change impacts on international seaports: knowledge, perceptions, and planning efforts among port administrators," Climatic Change, Springer, vol. 110(1), pages 5-29, January.
    9. Mayada Omer & Ali Mostashari & Roshanak Nilchiani & Mo Mansouri, 2012. "A framework for assessing resiliency of maritime transportation systems," Maritime Policy & Management, Taylor & Francis Journals, vol. 39(7), pages 685-703, December.
    10. S. Siddiqui & S. Gabriel, 2013. "An SOS1-Based Approach for Solving MPECs with a Natural Gas Market Application," Networks and Spatial Economics, Springer, vol. 13(2), pages 205-227, June.
    11. Allison C. Reilly & Andrew Samuel & Seth D. Guikema, 2015. "“Gaming the System”: Decision Making by Interdependent Critical Infrastructure," Decision Analysis, INFORMS, vol. 12(4), pages 155-172, December.
    12. Bell, Michael G.H. & Liu, Xin & Rioult, Jeremy & Angeloudis, Panagiotis, 2013. "A cost-based maritime container assignment model," Transportation Research Part B: Methodological, Elsevier, vol. 58(C), pages 58-70.
    13. Lichun Chen & Elise Miller-Hooks, 2012. "Resilience: An Indicator of Recovery Capability in Intermodal Freight Transport," Transportation Science, INFORMS, vol. 46(1), pages 109-123, February.
    14. Boris Sokolov & Dmitry Ivanov & Alexandre Dolgui & Alexander Pavlov, 2016. "Structural quantification of the ripple effect in the supply chain," International Journal of Production Research, Taylor & Francis Journals, vol. 54(1), pages 152-169, January.
    15. Song, Dong-Ping & Lyons, Andrew & Li, Dong & Sharifi, Hossein, 2016. "Modeling port competition from a transport chain perspective," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 87(C), pages 75-96.
    16. Kanokporn Rienkhemaniyom & A. Ravi Ravindran, 2014. "Global Supply Chain Network Design Incorporating Disruption Risk," International Journal of Business Analytics (IJBAN), IGI Global, vol. 1(3), pages 37-62, July.
    17. Chen, Hsiao-Chi & Liu, Shi-Miin, 2016. "Should ports expand their facilities under congestion and uncertainty?," Transportation Research Part B: Methodological, Elsevier, vol. 85(C), pages 109-131.
    18. Asgari, Nasrin & Farahani, Reza Zanjirani & Goh, Mark, 2013. "Network design approach for hub ports-shipping companies competition and cooperation," Transportation Research Part A: Policy and Practice, Elsevier, vol. 48(C), pages 1-18.
    19. Adam Rose & Dan Wei, 2013. "Estimating The Economic Consequences Of A Port Shutdown: The Special Role Of Resilience," Economic Systems Research, Taylor & Francis Journals, vol. 25(2), pages 212-232, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Baozhuang Niu & Zhipeng Dai & Lei Chen, 2022. "Information leakage in a cross-border logistics supply chain considering demand uncertainty and signal inference," Annals of Operations Research, Springer, vol. 309(2), pages 785-816, February.
    2. Wang, Bi & Chin, Kwai Sang & Su, Qin, 2022. "Prevention and adaptation to diversified risks in the seaport–dry port system under asymmetric risk behaviors: Invest earlier or wait?," Transport Policy, Elsevier, vol. 125(C), pages 11-36.
    3. Asadabadi, Ali & Miller-Hooks, Elise, 2020. "Maritime port network resiliency and reliability through co-opetition," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 137(C).
    4. Wang, Junjin & Liu, Jiaguo & Zhang, Xin, 2020. "Service purchasing and market-entry problems in a shipping supply chain," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 136(C).
    5. Mohammad Torkjazi & Nathan Huynh & Ali Asadabadi, 2022. "Modeling the Truck Appointment System as a Multi-Player Game," Logistics, MDPI, vol. 6(3), pages 1-25, July.
    6. Li, Wenjie & Asadabadi, Ali & Miller-Hooks, Elise, 2022. "Enhancing resilience through port coalitions in maritime freight networks," Transportation Research Part A: Policy and Practice, Elsevier, vol. 157(C), pages 1-23.
    7. Laure Rousset & César Ducruet, 2020. "Disruptions in Spatial Networks: a Comparative Study of Major Shocks Affecting Ports and Shipping Patterns," Networks and Spatial Economics, Springer, vol. 20(2), pages 423-447, June.
    8. Papakonstantinou, Ilia & Lee, Jinwoo & Madanat, Samer Michel, 2019. "Game theoretic approaches for highway infrastructure protection against sea level rise: Co-opetition among multiple players," Transportation Research Part B: Methodological, Elsevier, vol. 123(C), pages 21-37.
    9. Zheng, Shiyuan & Jiang, Changmin & Fu, Xiaowen, 2021. "Investment competition on dedicated terminals under demand ambiguity," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 150(C).
    10. Dongping Song, 2021. "A Literature Review, Container Shipping Supply Chain: Planning Problems and Research Opportunities," Logistics, MDPI, vol. 5(2), pages 1-26, June.
    11. Zhang, Li-Hao & Liu, Chunxiao & Zhang, Cheng & Wang, Shanshan, 2023. "Upstream encroachment and downstream outsourcing in competing shipping supply chains," International Journal of Production Economics, Elsevier, vol. 255(C).
    12. Zarghami, Seyed Ashkan & Dumrak, Jantanee, 2021. "Unearthing vulnerability of supply provision in logistics networks to the black swan events: Applications of entropy theory and network analysis," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    13. Xia, Wenyi & Lindsey, Robin, 2021. "Port adaptation to climate change and capacity investments under uncertainty," Transportation Research Part B: Methodological, Elsevier, vol. 152(C), pages 180-204.
    14. Wang, Junjin & Liu, Jiaguo & Wang, Fan & Yue, Xiaohang, 2021. "Blockchain technology for port logistics capability: Exclusive or sharing," Transportation Research Part B: Methodological, Elsevier, vol. 149(C), pages 347-392.
    15. Zhen, Lu & Lin, Shumin & Zhou, Chenhao, 2022. "Green port oriented resilience improvement for traffic-power coupled networks," Reliability Engineering and System Safety, Elsevier, vol. 225(C).
    16. Bi Wang & Kwai Sang Chin & Qin Su, 2022. "Risk management and market structures in seaport–dry port systems," Maritime Economics & Logistics, Palgrave Macmillan;International Association of Maritime Economists (IAME), vol. 24(1), pages 114-137, March.
    17. Wenjie Li & Elise Miller-Hooks, 2023. "Understanding the implications of port-related workforce shortages on global maritime performance through the study of a carrier alliance," Maritime Economics & Logistics, Palgrave Macmillan;International Association of Maritime Economists (IAME), vol. 25(3), pages 452-478, September.
    18. Zheng, Shiyuan & Chen, Xirong & Dong, Kangyin & Wang, Kun & Fu, Xiaowen, 2022. "Joint investment on resilience of cross-country transport infrastructure," Transportation Research Part A: Policy and Practice, Elsevier, vol. 166(C), pages 406-423.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Asadabadi, Ali & Miller-Hooks, Elise, 2020. "Maritime port network resiliency and reliability through co-opetition," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 137(C).
    2. Song, Zhuzhu & Tang, Wansheng & Zhao, Ruiqing, 2018. "Cooperation mode for a liner company with heterogeneous ports: Business cooperation vs. port investment," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 118(C), pages 513-533.
    3. Li, Wenjie & Asadabadi, Ali & Miller-Hooks, Elise, 2022. "Enhancing resilience through port coalitions in maritime freight networks," Transportation Research Part A: Policy and Practice, Elsevier, vol. 157(C), pages 1-23.
    4. Laure Rousset & César Ducruet, 2020. "Disruptions in Spatial Networks: a Comparative Study of Major Shocks Affecting Ports and Shipping Patterns," Networks and Spatial Economics, Springer, vol. 20(2), pages 423-447, June.
    5. HOSSAIN, Niamat Ullah Ibne & Amrani, Safae El & Jaradat, Raed & Marufuzzaman, Mohammad & Buchanan, Randy & Rinaudo, Christina & Hamilton, Michael, 2020. "Modeling and assessing interdependencies between critical infrastructures using Bayesian network: A case study of inland waterway port and surrounding supply chain network," Reliability Engineering and System Safety, Elsevier, vol. 198(C).
    6. Gang Dong & Dandan Zhong, 2019. "Tacit Collusion of Pricing Strategy Game between Regional Ports: The Case of Yangtze River Economic Belt," Sustainability, MDPI, vol. 11(2), pages 1-17, January.
    7. Zhao, Ruijia & Xie, Xinlian & Li, Xinyang & Li, Guodong, 2020. "Game-theoretical models of competition analysis and pricing strategy for two modes for repairing damaged marine structures at sea," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 142(C).
    8. Wang, Junjin & Liu, Jiaguo & Wang, Fan & Yue, Xiaohang, 2021. "Blockchain technology for port logistics capability: Exclusive or sharing," Transportation Research Part B: Methodological, Elsevier, vol. 149(C), pages 347-392.
    9. Hossain, Niamat Ullah Ibne & Nur, Farjana & Hosseini, Seyedmohsen & Jaradat, Raed & Marufuzzaman, Mohammad & Puryear, Stephen M., 2019. "A Bayesian network based approach for modeling and assessing resilience: A case study of a full service deep water port," Reliability Engineering and System Safety, Elsevier, vol. 189(C), pages 378-396.
    10. Xiao, Yi & Wang, Grace & Ge, Ying-En & Xu, Qinyi & Li, Kevin X., 2021. "Game model for a new inspection regime of port state control under different reward and punishment conditions," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 156(C).
    11. Zhen, Lu & Lin, Shumin & Zhou, Chenhao, 2022. "Green port oriented resilience improvement for traffic-power coupled networks," Reliability Engineering and System Safety, Elsevier, vol. 225(C).
    12. Laure Rousset & César Ducruet, 2020. "Disruptions in Spatial Networks: a Comparative Study of Major Shocks Affecting Ports and Shipping Patterns," Post-Print halshs-02588551, HAL.
    13. Sheng, Dian & Li, Zhi-Chun & Fu, Xiaowen & Gillen, David, 2017. "Modeling the effects of unilateral and uniform emission regulations under shipping company and port competition," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 101(C), pages 99-114.
    14. Luo, Meifeng & Chen, Fuying & Zhang, Jiantong, 2022. "Relationships among port competition, cooperation and competitiveness: A literature review," Transport Policy, Elsevier, vol. 118(C), pages 1-9.
    15. Dong, Gang & Huang, Rongbing, 2022. "Inter-port price competition in a multi-port gateway region," Research in Transportation Economics, Elsevier, vol. 94(C).
    16. Lee, Chung-Yee & Song, Dong-Ping, 2017. "Ocean container transport in global supply chains: Overview and research opportunities," Transportation Research Part B: Methodological, Elsevier, vol. 95(C), pages 442-474.
    17. Assunta Di Vaio & Luisa Varriale, 2018. "Management Innovation for Environmental Sustainability in Seaports: Managerial Accounting Instruments and Training for Competitive Green Ports beyond the Regulations," Sustainability, MDPI, vol. 10(3), pages 1-35, March.
    18. Arkajyoti De & Surya Prakash Singh, 2022. "Analysis of Competitiveness in Agri-Supply Chain Logistics Outsourcing: A B2B Contractual Framework," Sustainability, MDPI, vol. 14(11), pages 1-33, June.
    19. Garvey, Myles D. & Carnovale, Steven, 2020. "The rippled newsvendor: A new inventory framework for modeling supply chain risk severity in the presence of risk propagation," International Journal of Production Economics, Elsevier, vol. 228(C).
    20. Zhang, Li-Hao & Zhang, Yang-Guang & Wang, Shan-Shan, 2022. "Ocean shipping company’s encroachment with outsourcing competition," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 167(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transb:v:108:y:2018:i:c:p:281-298. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/548/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.