IDEAS home Printed from https://ideas.repec.org/a/taf/apeclt/v13y2006i10p659-663.html
   My bibliography  Save this article

Alternative technology indexes in the offshore oil and gas industry

Author

Listed:
  • Shunsuke Managi
  • James Opaluch
  • Di Jin
  • Thomas Grigalunas

Abstract

R&D policies play an important role for developing technologies. Alternative technology indexes are tested to provide an improved understanding of technology index in the offshore oil and gas industry. The analysis compares ten alternative technology indexes including technology diffusion counts, importance-weighted diffusion, innovation counts, importance-weighted innovation, patent counts, importance-weighted patent counts, and a simple measure of time. It is found that utilizing weighted diffusion count as an index of technology is clearly superior to all other indexes. The results also show the time as an index of technology is clearly inferior to most other indexes.

Suggested Citation

  • Shunsuke Managi & James Opaluch & Di Jin & Thomas Grigalunas, 2006. "Alternative technology indexes in the offshore oil and gas industry," Applied Economics Letters, Taylor & Francis Journals, vol. 13(10), pages 659-663.
  • Handle: RePEc:taf:apeclt:v:13:y:2006:i:10:p:659-663
    DOI: 10.1080/13504850500401866
    as

    Download full text from publisher

    File URL: http://www.informaworld.com/openurl?genre=article&doi=10.1080/13504850500401866&magic=repec&7C&7C8674ECAB8BB840C6AD35DC6213A474B5
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/13504850500401866?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Manuel Trajtenberg, 1990. "A Penny for Your Quotes: Patent Citations and the Value of Innovations," RAND Journal of Economics, The RAND Corporation, vol. 21(1), pages 172-187, Spring.
    2. Managi, Shunsuke & Opaluch, James J. & Jin, Di & Grigalunas, Thomas A., 2004. "Technological change and depletion in offshore oil and gas," Journal of Environmental Economics and Management, Elsevier, vol. 47(2), pages 388-409, March.
    3. Bronwyn H. Hall & Adam B. Jaffe & Manuel Trajtenberg, 2000. "Market Value and Patent Citations: A First Look," NBER Working Papers 7741, National Bureau of Economic Research, Inc.
    4. K. J. Arrow, 1971. "The Economic Implications of Learning by Doing," Palgrave Macmillan Books, in: F. H. Hahn (ed.), Readings in the Theory of Growth, chapter 11, pages 131-149, Palgrave Macmillan.
    5. Shunsuke Managi & SJames J. Opaluch & Di Jin & Thomas A. Grigalunas, 2005. "Environmental Regulations and Technological Change in the Offshore Oil and Gas Industry," Land Economics, University of Wisconsin Press, vol. 81(2).
    6. Zvi Griliches, 1984. "R&D, Patents, and Productivity," NBER Books, National Bureau of Economic Research, Inc, number gril84-1, March.
    7. Jean O. Lanjouw & Mark Schankerman, 1999. "The Quality of Ideas: Measuring Innovation with Multiple Indicators," NBER Working Papers 7345, National Bureau of Economic Research, Inc.
    8. Shunsuke Managi & David Karemera, 2004. "Input and output biased technological change in US agriculture," Applied Economics Letters, Taylor & Francis Journals, vol. 11(5), pages 283-286.
    9. David Popp, 2002. "Induced Innovation and Energy Prices," American Economic Review, American Economic Association, vol. 92(1), pages 160-180, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Daniels, Bryce & Johnson, Daniel K.N., 2019. "More where that came from: Induced innovation in the american oil and gas sectors," Resources Policy, Elsevier, vol. 64(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kilponen, Juha & Santavirta, Torsten, 2004. "Competition and Innovation - Microeconometric Evidence using Finnish Data," Research Reports 113, VATT Institute for Economic Research.
    2. Ufuk Akcigit, 2009. "Firm Size, Innovation Dynamics and Growth," 2009 Meeting Papers 1267, Society for Economic Dynamics.
    3. Hagedoorn, John & Cloodt, Myriam, 2003. "Measuring innovative performance: is there an advantage in using multiple indicators?," Research Policy, Elsevier, vol. 32(8), pages 1365-1379, September.
    4. Per Botolf Maurseth, 2005. "Lovely but dangerous: The impact of patent citations on patent renewal," Economics of Innovation and New Technology, Taylor & Francis Journals, vol. 14(5), pages 351-374.
    5. Stavins, Robert & Jaffe, Adam & Newell, Richard, 2000. "Technological Change and the Environment," Working Paper Series rwp00-002, Harvard University, John F. Kennedy School of Government.
    6. Martin Kalthaus, 2020. "Knowledge recombination along the technology life cycle," Journal of Evolutionary Economics, Springer, vol. 30(3), pages 643-704, July.
    7. Leila Tahmooresnejad & Catherine Beaudry, 2019. "Collaboration or funding: lessons from a study of nanotechnology patenting in Canada and the United States," The Journal of Technology Transfer, Springer, vol. 44(3), pages 741-777, June.
    8. Gamal Atallah & Gabriel Rodríguez, 2006. "Indirect patent citations," Scientometrics, Springer;Akadémiai Kiadó, vol. 67(3), pages 437-465, June.
    9. Gianluca Baio & Laura Magazzini & Claudia Oglialoro & Fabio Pammolli & Massimo Riccaboni, 2005. "Medical Devices: Competitiveness and Impact on Public Health Expenditure," Working Papers CERM 05-2005, Competitività, Regole, Mercati (CERM).
    10. Bruno Van Pottelsberghe & Eleftherios Sapsalis & Ran Navon, 2006. "Academic vs. industry patenting: an in-depth analysis of what determines patent value," Working Papers CEB 05-008.RS, ULB -- Universite Libre de Bruxelles.
    11. Emmanuel Duguet & Megan MacGarvie, 2005. "How well do patent citations measure flows of technology? Evidence from French innovation surveys," Economics of Innovation and New Technology, Taylor & Francis Journals, vol. 14(5), pages 375-393.
    12. Jaffe, Adam B. & Newell, Richard G. & Stavins, Robert N., 2003. "Chapter 11 Technological change and the environment," Handbook of Environmental Economics, in: K. G. Mäler & J. R. Vincent (ed.), Handbook of Environmental Economics, edition 1, volume 1, chapter 11, pages 461-516, Elsevier.
    13. Stefan Lachenmaier, 2005. "Identification of Available and Desirable Indicators for Patent Systems, Patenting Processes and Patent Rights Research Project for the German Patent and Trademark Office," ifo Forschungsberichte, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, number 25, October.
    14. Mark Zachary Taylor, 2007. "Political Decentralization and Technological Innovation: Testing the Innovative Advantages of Decentralized States," Review of Policy Research, Policy Studies Organization, vol. 24(3), pages 231-257, May.
    15. Reitzig, Markus, 2004. "Improving patent valuations for management purposes--validating new indicators by analyzing application rationales," Research Policy, Elsevier, vol. 33(6-7), pages 939-957, September.
    16. Lim, Kwanghui, 2004. "The relationship between research and innovation in the semiconductor and pharmaceutical industries (1981-1997)," Research Policy, Elsevier, vol. 33(2), pages 287-321, March.
    17. Taylor, Mark Zachary & Wilson, Sean, 2012. "Does culture still matter?: The effects of individualism on national innovation rates," Journal of Business Venturing, Elsevier, vol. 27(2), pages 234-247.
    18. Laura Magazzini & Fabio Pammolli & Massimo Riccaboni, 2008. "Patent Value and R&D Competition," Working Papers 51/2008, University of Verona, Department of Economics.
    19. Morales, Rosa & Radoniqi, Fatos, 2017. "Intangibles and the Market Value of Biopharmaceutical Startups," MPRA Paper 88580, University Library of Munich, Germany.
    20. Takanori Ida & Naomi Fukuzawa, 2013. "Effects of large-scale research funding programs: a Japanese case study," Scientometrics, Springer;Akadémiai Kiadó, vol. 94(3), pages 1253-1273, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:apeclt:v:13:y:2006:i:10:p:659-663. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/RAEL20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.