IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v32y2018i1d10.1007_s11269-017-1797-0.html
   My bibliography  Save this article

Rainfall Pattern Forecasting Using Novel Hybrid Intelligent Model Based ANFIS-FFA

Author

Listed:
  • Zaher Mundher Yaseen

    (Universiti Kebangsaan Malaysia
    University of Anbar)

  • Mazen Ismaeel Ghareb

    (University of Human Development
    University of Huddersfield)

  • Isa Ebtehaj

    (Razi University)

  • Hossein Bonakdari

    (Razi University)

  • Ridwan Siddique

    (University of Massachusetts
    University of Massachusetts)

  • Salim Heddam

    (University 20 Août 1955)

  • Ali A. Yusif

    (University of Duhok)

  • Ravinesh Deo

    (University of Southern Queensland)

Abstract

In this study, a new hybrid model integrated adaptive neuro fuzzy inference system with Firefly Optimization algorithm (ANFIS-FFA), is proposed for forecasting monthly rainfall with one-month lead time. The proposed ANFIS-FFA model is compared with standard ANFIS model, achieved using predictor-predictand data from the Pahang river catchment located in the Malaysian Peninsular. To develop the predictive models, a total of fifteen years of data were selected, split into nine years for training and six years for testing the accuracy of the proposed ANFIS-FFA model. To attain optimal models, several input combinations of antecedents’ rainfall data were used as predictor variables with sixteen different model combination considered for rainfall prediction. The performances of ANFIS-FFA models were evaluated using five statistical indices: the coefficient of determination (R 2 ), Nash-Sutcliffe efficiency (NSE), Willmott’s Index (WI), root mean square error (RMSE) and mean absolute error (MAE). The results attained show that, the ANFIS-FFA model performed better than the standard ANFIS model, with high values of R 2 , NSE and WI and low values of RMSE and MAE. In test phase, the monthly rainfall predictions using ANFIS-FFA yielded R 2 , NSE and WI of about 0.999, 0.998 and 0.999, respectively, while the RMSE and MAE values were found to be about 0.272 mm and 0.133 mm, respectively. It was also evident that the performances of the ANFIS-FFA and ANFIS models were very much governed by the input data size where the ANFIS-FFA model resulted in an increase in the value of R 2 , NSE and WI from 0.463, 0.207 and 0.548, using only one antecedent month of data as an input (t-1), to almost 0.999, 0.998 and 0.999, respectively, using five antecedent months of predictor data (t-1, t-2, t-3, t-6, t-12, t-24). We ascertain that the ANFIS-FFA is a prudent modelling approach that could be adopted for the simulation of monthly rainfall in the present study region.

Suggested Citation

  • Zaher Mundher Yaseen & Mazen Ismaeel Ghareb & Isa Ebtehaj & Hossein Bonakdari & Ridwan Siddique & Salim Heddam & Ali A. Yusif & Ravinesh Deo, 2018. "Rainfall Pattern Forecasting Using Novel Hybrid Intelligent Model Based ANFIS-FFA," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(1), pages 105-122, January.
  • Handle: RePEc:spr:waterr:v:32:y:2018:i:1:d:10.1007_s11269-017-1797-0
    DOI: 10.1007/s11269-017-1797-0
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11269-017-1797-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11269-017-1797-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. De Gooijer, Jan G. & Hyndman, Rob J., 2006. "25 years of time series forecasting," International Journal of Forecasting, Elsevier, vol. 22(3), pages 443-473.
    2. Isa Ebtehaj & Hossein Bonakdari, 2014. "Performance Evaluation of Adaptive Neural Fuzzy Inference System for Sediment Transport in Sewers," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(13), pages 4765-4779, October.
    3. Ahmed El-Shafie & Mahmoud Taha & Aboelmagd Noureldin, 2007. "A neuro-fuzzy model for inflow forecasting of the Nile river at Aswan high dam," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 21(3), pages 533-556, March.
    4. Clements, Michael P. & Franses, Philip Hans & Swanson, Norman R., 2004. "Forecasting economic and financial time-series with non-linear models," International Journal of Forecasting, Elsevier, vol. 20(2), pages 169-183.
    5. Mellit, Adel & Kalogirou, Soteris A., 2011. "ANFIS-based modelling for photovoltaic power supply system: A case study," Renewable Energy, Elsevier, vol. 36(1), pages 250-258.
    6. Nesreen Ahmed & Amir Atiya & Neamat El Gayar & Hisham El-Shishiny, 2010. "An Empirical Comparison of Machine Learning Models for Time Series Forecasting," Econometric Reviews, Taylor & Francis Journals, vol. 29(5-6), pages 594-621.
    7. R. Venkata Ramana & B. Krishna & S. Kumar & N. Pandey, 2013. "Monthly Rainfall Prediction Using Wavelet Neural Network Analysis," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(10), pages 3697-3711, August.
    8. Poskitt, D. S. & Tremayne, A. R., 1986. "The selection and use of linear and bilinear time series models," International Journal of Forecasting, Elsevier, vol. 2(1), pages 101-114.
    9. Engle, Robert F, 1982. "Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation," Econometrica, Econometric Society, vol. 50(4), pages 987-1007, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mojtaba Kadkhodazadeh & Saeed Farzin, 2021. "A Novel LSSVM Model Integrated with GBO Algorithm to Assessment of Water Quality Parameters," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(12), pages 3939-3968, September.
    2. Alireza Farrokhi & Saeed Farzin & Sayed-Farhad Mousavi, 2020. "A New Framework for Evaluation of Rainfall Temporal Variability through Principal Component Analysis, Hybrid Adaptive Neuro-Fuzzy Inference System, and Innovative Trend Analysis Methodology," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(10), pages 3363-3385, August.
    3. Quoc Bao Pham & S. I. Abba & Abdullahi Garba Usman & Nguyen Thi Thuy Linh & Vivek Gupta & Anurag Malik & Romulus Costache & Ngoc Duong Vo & Doan Quang Tri, 2019. "Potential of Hybrid Data-Intelligence Algorithms for Multi-Station Modelling of Rainfall," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(15), pages 5067-5087, December.
    4. Saeid Mehdizadeh, 2020. "Using AR, MA, and ARMA Time Series Models to Improve the Performance of MARS and KNN Approaches in Monthly Precipitation Modeling under Limited Climatic Data," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(1), pages 263-282, January.
    5. Kaloop, Mosbeh R. & Bardhan, Abidhan & Kardani, Navid & Samui, Pijush & Hu, Jong Wan & Ramzy, Ahmed, 2021. "Novel application of adaptive swarm intelligence techniques coupled with adaptive network-based fuzzy inference system in predicting photovoltaic power," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fischer, Thomas & Krauss, Christopher & Treichel, Alex, 2018. "Machine learning for time series forecasting - a simulation study," FAU Discussion Papers in Economics 02/2018, Friedrich-Alexander University Erlangen-Nuremberg, Institute for Economics.
    2. De Gooijer, Jan G. & Hyndman, Rob J., 2006. "25 years of time series forecasting," International Journal of Forecasting, Elsevier, vol. 22(3), pages 443-473.
    3. Jan G. De Gooijer & Rob J. Hyndman, 2005. "25 Years of IIF Time Series Forecasting: A Selective Review," Monash Econometrics and Business Statistics Working Papers 12/05, Monash University, Department of Econometrics and Business Statistics.
    4. Maghsoodi, Abtin Ijadi, 2023. "Cryptocurrency portfolio allocation using a novel hybrid and predictive big data decision support system," Omega, Elsevier, vol. 115(C).
    5. Rossen Anja, 2016. "On the Predictive Content of Nonlinear Transformations of Lagged Autoregression Residuals and Time Series Observations," Journal of Economics and Statistics (Jahrbuecher fuer Nationaloekonomie und Statistik), De Gruyter, vol. 236(3), pages 389-409, May.
    6. Saeid Mehdizadeh & Javad Behmanesh & Keivan Khalili, 2018. "New Approaches for Estimation of Monthly Rainfall Based on GEP-ARCH and ANN-ARCH Hybrid Models," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(2), pages 527-545, January.
    7. Salas-Molina, Francisco & Martin, Francisco J. & Rodríguez-Aguilar, Juan A. & Serrà, Joan & Arcos, Josep Ll., 2017. "Empowering cash managers to achieve cost savings by improving predictive accuracy," International Journal of Forecasting, Elsevier, vol. 33(2), pages 403-415.
    8. Abakah, Emmanuel Joel Aikins & Gil-Alana, Luis Alberiko & Madigu, Godfrey & Romero-Rojo, Fatima, 2020. "Volatility persistence in cryptocurrency markets under structural breaks," International Review of Economics & Finance, Elsevier, vol. 69(C), pages 680-691.
    9. R Fildes & K Nikolopoulos & S F Crone & A A Syntetos, 2008. "Forecasting and operational research: a review," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 59(9), pages 1150-1172, September.
    10. Michael P. Clements & David F. Hendry, 2005. "Guest Editors’ Introduction: Information in Economic Forecasting," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 67(s1), pages 713-753, December.
    11. Christian Hertrich, 2013. "Asset Allocation Considerations for Pension Insurance Funds," Springer Books, Springer, edition 127, number 978-3-658-02167-2, September.
    12. Weron, Rafał, 2014. "Electricity price forecasting: A review of the state-of-the-art with a look into the future," International Journal of Forecasting, Elsevier, vol. 30(4), pages 1030-1081.
    13. Martin Madera & Dusan Marcek, 2023. "Intelligence in Finance and Economics for Predicting High-Frequency Data," Mathematics, MDPI, vol. 11(2), pages 1-15, January.
    14. Jennifer Castle & David Hendry, 2013. "Semi-automatic Non-linear Model selection," Economics Series Working Papers 654, University of Oxford, Department of Economics.
    15. Stekler, H.O., 2007. "The future of macroeconomic forecasting: Understanding the forecasting process," International Journal of Forecasting, Elsevier, vol. 23(2), pages 237-248.
    16. Liu, Yamei, 2000. "Overfitting and forecasting: linear versus non-linear time series models," ISU General Staff Papers 2000010108000014914, Iowa State University, Department of Economics.
    17. Gloria González-Rivera & Tae-Hwy Lee, 2007. "Nonlinear Time Series in Financial Forecasting," Working Papers 200803, University of California at Riverside, Department of Economics, revised Feb 2008.
    18. Vortelinos, Dimitrios I., 2017. "Forecasting realized volatility: HAR against Principal Components Combining, neural networks and GARCH," Research in International Business and Finance, Elsevier, vol. 39(PB), pages 824-839.
    19. Mingwen Yang & Zhiqiang (Eric) Zheng & Vijay Mookerjee, 2019. "Prescribing Response Strategies to Manage Customer Opinions: A Stochastic Differential Equation Approach," Information Systems Research, INFORMS, vol. 30(2), pages 351-374, June.
    20. Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022. "Forecasting: theory and practice," International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
      • Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:32:y:2018:i:1:d:10.1007_s11269-017-1797-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.