IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v27y2013i2p365-379.html
   My bibliography  Save this article

Impacts of Climate Variables on Residential Water Consumption in the Czech Republic

Author

Listed:
  • Lenka Slavíková
  • Vítězslav Malý
  • Michael Rost
  • Lubomír Petružela
  • Ondřej Vojáček

Abstract

The paper investigates whether there is a statistically significant impact of short-term climate variables (specifically air temperature and rainfall) on residential water consumption at two selected case sites in the Czech Republic. The analysis is based on a unique time series of daily data from 2004–2009. The statistical methods used are CART methodology and a decomposition of these time series based on a locally weighted regression method. Apart from the data analysis results, the investigation raises several methodological questions regarding the use of daily data and the scope of analysis based on such data sets. Copyright Springer Science+Business Media Dordrecht 2013

Suggested Citation

  • Lenka Slavíková & Vítězslav Malý & Michael Rost & Lubomír Petružela & Ondřej Vojáček, 2013. "Impacts of Climate Variables on Residential Water Consumption in the Czech Republic," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(2), pages 365-379, January.
  • Handle: RePEc:spr:waterr:v:27:y:2013:i:2:p:365-379
    DOI: 10.1007/s11269-012-0191-1
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11269-012-0191-1
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11269-012-0191-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Julie A. Hewitt & W. Michael Hanemann, 1995. "A Discrete/Continuous Choice Approach to Residential Water Demand under Block Rate Pricing," Land Economics, University of Wisconsin Press, vol. 71(2), pages 173-192.
    2. Junying Chu & Can Wang & Jining Chen & Hao Wang, 2009. "Agent-Based Residential Water Use Behavior Simulation and Policy Implications: A Case-Study in Beijing City," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 23(15), pages 3267-3295, December.
    3. Arbues, Fernando & Garcia-Valinas, Maria Angeles & Martinez-Espineira, Roberto, 2003. "Estimation of residential water demand: a state-of-the-art review," Journal of Behavioral and Experimental Economics (formerly The Journal of Socio-Economics), Elsevier, vol. 32(1), pages 81-102, March.
    4. Thomas Berger & Regina Birner & Nancy Mccarthy & JosÉ DíAz & Heidi Wittmer, 2007. "Capturing the complexity of water uses and water users within a multi-agent framework," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 21(1), pages 129-148, January.
    5. Renwick, Mary E. & Green, Richard D., 2000. "Do Residential Water Demand Side Management Policies Measure Up? An Analysis of Eight California Water Agencies," Journal of Environmental Economics and Management, Elsevier, vol. 40(1), pages 37-55, July.
    6. Michael L. Nieswiadomy & David J. Molina, 1989. "Comparing Residential Water Demand Estimates under Decreasing and Increasing Block Rates Using Household Data," Land Economics, University of Wisconsin Press, vol. 65(3), pages 280-289.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Md Haque & Ataur Rahman & Dharma Hagare & Golam Kibria, 2014. "Probabilistic Water Demand Forecasting Using Projected Climatic Data for Blue Mountains Water Supply System in Australia," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(7), pages 1959-1971, May.
    2. Diana Fiorillo & Zoran Kapelan & Maria Xenochristou & Francesco De Paola & Maurizio Giugni, 2021. "Assessing the Impact of Climate Change on Future Water Demand using Weather Data," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(5), pages 1449-1462, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Roberto Martínez-Espiñeira, 2007. "An Estimation of Residential Water Demand Using Co-Integration and Error Correction Techniques," Journal of Applied Economics, Taylor & Francis Journals, vol. 10(1), pages 161-184, May.
    2. Worthington, Andrew C., 2010. "Commercial and Industrial Water Demand Estimation: Theoretical and Methodological Guidelines for Applied Economics Research/Estimación de la demanda de agua comercial e industrial: pautas teóricas y m," Estudios de Economia Aplicada, Estudios de Economia Aplicada, vol. 28, pages 237-258, Agosto.
    3. R. Quentin Grafton & Tom Kompas & Hang To & Michael Ward, 2009. "Residential Water Consumption: A Cross Country Analysis," Environmental Economics Research Hub Research Reports 0923, Environmental Economics Research Hub, Crawford School of Public Policy, The Australian National University, revised Aug 2009.
    4. Ruijs, A. & Zimmermann, A. & van den Berg, M., 2008. "Demand and distributional effects of water pricing policies," Ecological Economics, Elsevier, vol. 66(2-3), pages 506-516, June.
    5. Dinusha Dharmaratna & Edwyna Harris, 2012. "Estimating Residential Water Demand Using the Stone-Geary Functional Form: The Case of Sri Lanka," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(8), pages 2283-2299, June.
    6. Arbues, Fernando & Garcia-Valinas, Maria Angeles & Martinez-Espineira, Roberto, 2003. "Estimation of residential water demand: a state-of-the-art review," Journal of Behavioral and Experimental Economics (formerly The Journal of Socio-Economics), Elsevier, vol. 32(1), pages 81-102, March.
    7. Henrique Monteiro, 2010. "Residential Water Demand in Portugal: checking for efficiency-based justifications for increasing block tariffs," Working Papers Series 1 ercwp0110, ISCTE-IUL, Business Research Unit (BRU-IUL).
    8. Arjan Ruijs, 2007. "Welfare and Distribution Effects of Water Pricing Policies," Working Papers 2007.92, Fondazione Eni Enrico Mattei.
    9. Shyama Ratnasiri & Clevo Wilson & Wasantha Athukorala & Maria A. Garcia-Valiñas & Benno Torgler & Robert Gifford, 2018. "Effectiveness of two pricing structures on urban water use and conservation: a quasi-experimental investigation," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 20(3), pages 547-560, July.
    10. Andrew C. Worthington & Mark Hoffman, 2008. "An Empirical Survey Of Residential Water Demand Modelling," Journal of Economic Surveys, Wiley Blackwell, vol. 22(5), pages 842-871, December.
    11. Christopher Boyer & Damian Adams & Tatiana Borisova & Christopher Clark, 2012. "Factors Driving Water Utility Rate Structure Choice: Evidence from Four Southern U.S. States," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(10), pages 2747-2760, August.
    12. Marie-Estelle Binet & Stéphanie Durand & michel Paul & Fabrizio Carlevaro, 2005. "Household Water Demand Estimation using Micro-Level Data," ERSA conference papers ersa05p17, European Regional Science Association.
    13. Sheila M. Olmstead, 2010. "The Economics of Managing Scarce Water Resources," Review of Environmental Economics and Policy, Association of Environmental and Resource Economists, vol. 4(2), pages 179-198, Summer.
    14. Mónica Maldonado-Devis & Vicent Almenar-Llongo, 2021. "A Panel Data Estimation of Domestic Water Demand with IRT Tariff Structure: The Case of the City of Valencia (Spain)," Sustainability, MDPI, vol. 13(3), pages 1-26, January.
    15. Milan Ščasný & Šarlota Smutná, 2021. "Estimation of price and income elasticity of residential water demand in the Czech Republic over three decades," Journal of Consumer Affairs, Wiley Blackwell, vol. 55(2), pages 580-608, June.
    16. Céline Nauges & Dale Whittington, 2010. "Estimation of Water Demand in Developing Countries: An Overview," The World Bank Research Observer, World Bank, vol. 25(2), pages 263-294, August.
    17. Asci, Serhat & Borisova, Tatiana, 2014. "The Effect of Price and Non-Price Conservation Programs on Residential Water Demand," 2014 Annual Meeting, July 27-29, 2014, Minneapolis, Minnesota 170687, Agricultural and Applied Economics Association.
    18. Liang Lu & David Deller & Morten Hviid, 2018. "Price and Behavioural Signals to Encourage Household Water Conservation in Temperate Climates," Working Paper series, University of East Anglia, Centre for Competition Policy (CCP) 2018-01, Centre for Competition Policy, University of East Anglia, Norwich, UK..
    19. María Ángeles García-Valiñas & Sara Suárez-Fernández, 2022. "Are Economic Tools Useful to Manage Residential Water Demand? A Review of Old Issues and Emerging Topics," Post-Print hal-04067487, HAL.
    20. Tomas Havranek & Zuzana Irsova & Tomas Vlach, 2018. "Measuring the Income Elasticity of Water Demand: The Importance of Publication and Endogeneity Biases," Land Economics, University of Wisconsin Press, vol. 94(2), pages 259-283.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:27:y:2013:i:2:p:365-379. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.