IDEAS home Printed from https://ideas.repec.org/a/spr/stpapr/v63y2022i2d10.1007_s00362-021-01235-2.html
   My bibliography  Save this article

Some properties of the unified skew-normal distribution

Author

Listed:
  • Reinaldo B. Arellano-Valle

    (Pontificia Universidad Católica de Chile)

  • Adelchi Azzalini

    (Università degli Studi di Padova)

Abstract

For the family of multivariate probability distributions variously denoted as unified skew-normal, closed skew-normal and other names, a number of properties are already known, but many others are not, even some basic ones. The present contribution aims at filling some of the missing gaps. Specifically, the moments up to the fourth order are obtained, and from here the expressions of the Mardia’s measures of multivariate skewness and kurtosis. Other results concern the property of log-concavity of the distribution, closure with respect to conditioning on intervals, and a possible alternative parameterization.

Suggested Citation

  • Reinaldo B. Arellano-Valle & Adelchi Azzalini, 2022. "Some properties of the unified skew-normal distribution," Statistical Papers, Springer, vol. 63(2), pages 461-487, April.
  • Handle: RePEc:spr:stpapr:v:63:y:2022:i:2:d:10.1007_s00362-021-01235-2
    DOI: 10.1007/s00362-021-01235-2
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00362-021-01235-2
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00362-021-01235-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Roberto Colombi & Subal Kumbhakar & Gianmaria Martini & Giorgio Vittadini, 2014. "Closed-skew normality in stochastic frontiers with individual effects and long/short-run efficiency," Journal of Productivity Analysis, Springer, vol. 42(2), pages 123-136, October.
    2. Magnus, Jan R. & Neudecker, H., 1986. "Symmetry, 0-1 Matrices and Jacobians: A Review," Econometric Theory, Cambridge University Press, vol. 2(2), pages 157-190, August.
    3. Gupta, Arjun K. & González-Farías, Graciela & Domínguez-Molina, J. Armando, 2004. "A multivariate skew normal distribution," Journal of Multivariate Analysis, Elsevier, vol. 89(1), pages 181-190, April.
    4. Hosseini, Fatemeh & Eidsvik, Jo & Mohammadzadeh, Mohsen, 2011. "Approximate Bayesian inference in spatial GLMM with skew normal latent variables," Computational Statistics & Data Analysis, Elsevier, vol. 55(4), pages 1791-1806, April.
    5. Arellano-Valle, Reinaldo B. & Genton, Marc G., 2005. "On fundamental skew distributions," Journal of Multivariate Analysis, Elsevier, vol. 96(1), pages 93-116, September.
    6. Adelchi Azzalini & Giuliana Regoli, 2012. "Some properties of skew-symmetric distributions," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 64(4), pages 857-879, August.
    7. A. Capitanio & A. Azzalini & E. Stanghellini, 2003. "Graphical models for skew‐normal variates," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 30(1), pages 129-144, March.
    8. Liseo, Brunero & Loperfido, Nicola, 2003. "A Bayesian interpretation of the multivariate skew-normal distribution," Statistics & Probability Letters, Elsevier, vol. 61(4), pages 395-401, February.
    9. Kumbhakar, Subal C. & Lai, Hung-pin, 2016. "Maximum likelihood estimation of the revenue function system with output-specific technical efficiency," Economics Letters, Elsevier, vol. 138(C), pages 42-45.
    10. Horrace, William C., 2005. "Some results on the multivariate truncated normal distribution," Journal of Multivariate Analysis, Elsevier, vol. 94(1), pages 209-221, May.
    11. Mamadou S. Diallo & J. N. K. Rao, 2018. "Small area estimation of complex parameters under unit‐level models with skew‐normal errors," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 45(4), pages 1092-1116, December.
    12. Daniele Durante, 2019. "Conjugate Bayes for probit regression via unified skew-normal distributions," Biometrika, Biometrika Trust, vol. 106(4), pages 765-779.
    13. Omid Karimi & Mohsen Mohammadzadeh, 2012. "Bayesian spatial regression models with closed skew normal correlated errors and missing observations," Statistical Papers, Springer, vol. 53(1), pages 205-218, February.
    14. Arismendi, J.C., 2013. "Multivariate truncated moments," Journal of Multivariate Analysis, Elsevier, vol. 117(C), pages 41-75.
    15. Kim, Hyoung-Moon & Ryu, Duchwan & Mallick, Bani K. & Genton, Marc G., 2014. "Mixtures of skewed Kalman filters," Journal of Multivariate Analysis, Elsevier, vol. 123(C), pages 228-251.
    16. Adelchi Azzalini & Antonella Bacchieri, 2010. "A prospective combination of phase II and phase III in drug development," Metron - International Journal of Statistics, Dipartimento di Statistica, Probabilità e Statistiche Applicate - University of Rome, vol. 0(3), pages 347-369.
    17. Magnus, J.R. & Neudecker, H., 1979. "The commutation matrix : Some properties and applications," Other publications TiSEM d0b1e779-7795-4676-ac98-1, Tilburg University, School of Economics and Management.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Azzalini, Adelchi, 2022. "An overview on the progeny of the skew-normal family— A personal perspective," Journal of Multivariate Analysis, Elsevier, vol. 188(C).
    2. Sharon Lee & Geoffrey McLachlan, 2013. "On mixtures of skew normal and skew $$t$$ -distributions," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 7(3), pages 241-266, September.
    3. Ogasawara, Haruhiko, 2021. "A non-recursive formula for various moments of the multivariate normal distribution with sectional truncation," Journal of Multivariate Analysis, Elsevier, vol. 183(C).
    4. Sharon Lee & Geoffrey McLachlan, 2013. "Model-based clustering and classification with non-normal mixture distributions," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 22(4), pages 427-454, November.
    5. D.A. Turkington, 1997. "Some results in matrix calculus and an example of their application to econometrics," Economics Discussion / Working Papers 97-07, The University of Western Australia, Department of Economics.
    6. Reinaldo B. Arellano-Valle & Marc G. Genton, 2010. "Multivariate extended skew-t distributions and related families," Metron - International Journal of Statistics, Dipartimento di Statistica, Probabilità e Statistiche Applicate - University of Rome, vol. 0(3), pages 201-234.
    7. Jamalizadeh, A. & Balakrishnan, N., 2010. "Distributions of order statistics and linear combinations of order statistics from an elliptical distribution as mixtures of unified skew-elliptical distributions," Journal of Multivariate Analysis, Elsevier, vol. 101(6), pages 1412-1427, July.
    8. Liu, Shuangzhe & Leiva, Víctor & Zhuang, Dan & Ma, Tiefeng & Figueroa-Zúñiga, Jorge I., 2022. "Matrix differential calculus with applications in the multivariate linear model and its diagnostics," Journal of Multivariate Analysis, Elsevier, vol. 188(C).
    9. Arismendi, J.C., 2013. "Multivariate truncated moments," Journal of Multivariate Analysis, Elsevier, vol. 117(C), pages 41-75.
    10. Samuel Kotz & Donatella Vicari, 2005. "Survey of developments in the theory of continuous skewed distributions," Metron - International Journal of Statistics, Dipartimento di Statistica, Probabilità e Statistiche Applicate - University of Rome, vol. 0(2), pages 225-261.
    11. Rezaie, Javad & Eidsvik, Jo, 2014. "Kalman filter variants in the closed skew normal setting," Computational Statistics & Data Analysis, Elsevier, vol. 75(C), pages 1-14.
    12. Reinaldo B. Arellano-Valle & Javier E. Contreras-Reyes & Freddy O. López Quintero & Abel Valdebenito, 2019. "A skew-normal dynamic linear model and Bayesian forecasting," Computational Statistics, Springer, vol. 34(3), pages 1055-1085, September.
    13. Raúl Alejandro Morán-Vásquez & Anlly Daniela Giraldo-Melo & Mauricio A. Mazo-Lopera, 2023. "Quantile Estimation Using the Log-Skew-Normal Linear Regression Model with Application to Children’s Weight Data," Mathematics, MDPI, vol. 11(17), pages 1-10, August.
    14. C. Adcock, 2010. "Asset pricing and portfolio selection based on the multivariate extended skew-Student-t distribution," Annals of Operations Research, Springer, vol. 176(1), pages 221-234, April.
    15. Jorge M. Arevalillo & Hilario Navarro, 2019. "A stochastic ordering based on the canonical transformation of skew-normal vectors," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 28(2), pages 475-498, June.
    16. Hok Shing Kwong & Saralees Nadarajah, 2022. "A New Robust Class of Skew Elliptical Distributions," Methodology and Computing in Applied Probability, Springer, vol. 24(3), pages 1669-1691, September.
    17. Ahmed Hossain & Joseph Beyene, 2015. "Application of skew-normal distribution for detecting differential expression to microRNA data," Journal of Applied Statistics, Taylor & Francis Journals, vol. 42(3), pages 477-491, March.
    18. M. C. Jones, 2015. "On Families of Distributions with Shape Parameters," International Statistical Review, International Statistical Institute, vol. 83(2), pages 175-192, August.
    19. Young, Phil D. & Kahle, David J. & Young, Dean M., 2017. "On the independence of singular multivariate skew-normal sub-vectors," Statistics & Probability Letters, Elsevier, vol. 122(C), pages 58-62.
    20. Roozegar, Roohollah & Balakrishnan, Narayanaswamy & Jamalizadeh, Ahad, 2020. "On moments of doubly truncated multivariate normal mean–variance mixture distributions with application to multivariate tail conditional expectation," Journal of Multivariate Analysis, Elsevier, vol. 177(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:stpapr:v:63:y:2022:i:2:d:10.1007_s00362-021-01235-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.