IDEAS home Printed from https://ideas.repec.org/a/spr/stmapp/v30y2021i2d10.1007_s10260-020-00528-4.html
   My bibliography  Save this article

Estimating drift parameters in a non-ergodic Gaussian Vasicek-type model

Author

Listed:
  • Khalifa Es-Sebaiy

    (Kuwait University)

  • Mohammed Es.Sebaiy

    (Cadi Ayyad University)

Abstract

We study a problem of parameter estimation for a non-ergodic Gaussian Vasicek-type model defined as $$dX_t=\theta (\mu + X_t)dt+dG_t,\ t\ge 0$$ d X t = θ ( μ + X t ) d t + d G t , t ≥ 0 with unknown parameters $$\theta >0$$ θ > 0 , $$\mu \in {\mathbb {R}}$$ μ ∈ R and $$\alpha :=\theta \mu $$ α : = θ μ , where G is a Gaussian process. We provide least square-type estimators $$(\widetilde{\theta }_T,\widetilde{\mu }_T)$$ ( θ ~ T , μ ~ T ) and $$(\widetilde{\theta }_T,\widetilde{\alpha }_T)$$ ( θ ~ T , α ~ T ) , respectively, for $$(\theta ,\mu )$$ ( θ , μ ) and $$(\theta ,\alpha )$$ ( θ , α ) based a continuous-time observation of $$\{X_t,\ t\in [0,T]\}$$ { X t , t ∈ [ 0 , T ] } as $$T\rightarrow \infty $$ T → ∞ . Our aim is to derive some sufficient conditions on the driving Gaussian process G in order to ensure the strongly consistency and the joint asymptotic distribution of $$(\widetilde{\theta }_T,\widetilde{\mu }_T)$$ ( θ ~ T , μ ~ T ) and $$(\widetilde{\theta }_T,\widetilde{\alpha }_T)$$ ( θ ~ T , α ~ T ) . Moreover, we obtain that the limit distribution of $$\widetilde{\theta }_T$$ θ ~ T is a Cauchy-type distribution, and $$\widetilde{\mu }_T$$ μ ~ T and $$\widetilde{\alpha }_T$$ α ~ T are asymptotically normal. We apply our result to fractional Vasicek, subfractional Vasicek and bifractional Vasicek processes. This work extends the results of El Machkouri et al. (J Korean Stat Soc 45:329–341, 2016) studied in the case where $$\mu =0$$ μ = 0 .

Suggested Citation

  • Khalifa Es-Sebaiy & Mohammed Es.Sebaiy, 2021. "Estimating drift parameters in a non-ergodic Gaussian Vasicek-type model," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 30(2), pages 409-436, June.
  • Handle: RePEc:spr:stmapp:v:30:y:2021:i:2:d:10.1007_s10260-020-00528-4
    DOI: 10.1007/s10260-020-00528-4
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10260-020-00528-4
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10260-020-00528-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Es-Sebaiy, Khalifa & Viens, Frederi G., 2019. "Optimal rates for parameter estimation of stationary Gaussian processes," Stochastic Processes and their Applications, Elsevier, vol. 129(9), pages 3018-3054.
    2. Katsuto Tanaka & Weilin Xiao & Jun Yu, 2020. "Maximum Likelihood Estimation for the Fractional Vasicek Model," Econometrics, MDPI, vol. 8(3), pages 1-28, August.
    3. F. Comte & L. Coutin & E. Renault, 2012. "Affine fractional stochastic volatility models," Annals of Finance, Springer, vol. 8(2), pages 337-378, May.
    4. Vasicek, Oldrich, 1977. "An equilibrium characterization of the term structure," Journal of Financial Economics, Elsevier, vol. 5(2), pages 177-188, November.
    5. Fabienne Comte & Eric Renault, 1998. "Long memory in continuous‐time stochastic volatility models," Mathematical Finance, Wiley Blackwell, vol. 8(4), pages 291-323, October.
    6. Vasicek, Oldrich Alfonso, 1977. "Abstract: An Equilibrium Characterization of the Term Structure," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 12(4), pages 627-627, November.
    7. Jim Gatheral & Thibault Jaisson & Mathieu Rosenbaum, 2018. "Volatility is rough," Quantitative Finance, Taylor & Francis Journals, vol. 18(6), pages 933-949, June.
    8. Hu, Yaozhong & Nualart, David, 2010. "Parameter estimation for fractional Ornstein-Uhlenbeck processes," Statistics & Probability Letters, Elsevier, vol. 80(11-12), pages 1030-1038, June.
    9. Nourdin, Ivan & Diu Tran, T.T., 2019. "Statistical inference for Vasicek-type model driven by Hermite processes," Stochastic Processes and their Applications, Elsevier, vol. 129(10), pages 3774-3791.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rachid Belfadli & Khalifa Es-Sebaiy & Fatima-Ezzahra Farah, 2022. "Statistical analysis of the non-ergodic fractional Ornstein–Uhlenbeck process with periodic mean," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 85(7), pages 885-911, October.
    2. Wang, Jixia & Xiao, Xiaofang & Li, Chao, 2023. "Least squares estimations for approximate fractional Vasicek model driven by a semimartingale," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 208(C), pages 207-218.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Katsuto Tanaka & Weilin Xiao & Jun Yu, 2020. "Maximum Likelihood Estimation for the Fractional Vasicek Model," Econometrics, MDPI, vol. 8(3), pages 1-28, August.
    2. Rachid Belfadli & Khalifa Es-Sebaiy & Fatima-Ezzahra Farah, 2022. "Statistical analysis of the non-ergodic fractional Ornstein–Uhlenbeck process with periodic mean," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 85(7), pages 885-911, October.
    3. Morelli, Giacomo & Santucci de Magistris, Paolo, 2019. "Volatility tail risk under fractionality," Journal of Banking & Finance, Elsevier, vol. 108(C).
    4. Hui Jiang & Jingying Zhou, 2023. "An Exponential Nonuniform Berry–Esseen Bound for the Fractional Ornstein–Uhlenbeck Process," Journal of Theoretical Probability, Springer, vol. 36(2), pages 1037-1058, June.
    5. Xiao, Weilin & Yu, Jun, 2019. "Asymptotic theory for rough fractional Vasicek models," Economics Letters, Elsevier, vol. 177(C), pages 26-29.
    6. Ömer ÖNALAN, 2022. "Joint Modelling of S&P500 and VIX Indices with Rough Fractional Ornstein-Uhlenbeck Volatility Model," Journal for Economic Forecasting, Institute for Economic Forecasting, vol. 0(1), pages 68-84, April.
    7. Christian Bayer & Peter K. Friz & Paul Gassiat & Jorg Martin & Benjamin Stemper, 2020. "A regularity structure for rough volatility," Mathematical Finance, Wiley Blackwell, vol. 30(3), pages 782-832, July.
    8. Elisa Alòs & Maria Elvira Mancino & Tai-Ho Wang, 2019. "Volatility and volatility-linked derivatives: estimation, modeling, and pricing," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 42(2), pages 321-349, December.
    9. Xu, Weijun & Sun, Qi & Xiao, Weilin, 2012. "A new energy model to capture the behavior of energy price processes," Economic Modelling, Elsevier, vol. 29(5), pages 1585-1591.
    10. Hiroyuki Kawakatsu, 2022. "Modeling Realized Variance with Realized Quarticity," Stats, MDPI, vol. 5(3), pages 1-25, September.
    11. Giulia Di Nunno & Anton Yurchenko-Tytarenko, 2022. "Sandwiched Volterra Volatility model: Markovian approximations and hedging," Papers 2209.13054, arXiv.org.
    12. repec:uts:finphd:41 is not listed on IDEAS
    13. Raul Merino & Jan Posp'iv{s}il & Tom'av{s} Sobotka & Tommi Sottinen & Josep Vives, 2019. "Decomposition formula for rough Volterra stochastic volatility models," Papers 1906.07101, arXiv.org, revised Aug 2019.
    14. Wang, Jixia & Xiao, Xiaofang & Li, Chao, 2023. "Least squares estimations for approximate fractional Vasicek model driven by a semimartingale," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 208(C), pages 207-218.
    15. Casas, Isabel & Gao, Jiti, 2008. "Econometric estimation in long-range dependent volatility models: Theory and practice," Journal of Econometrics, Elsevier, vol. 147(1), pages 72-83, November.
    16. Li, Yingying & Liu, Guangying & Zhang, Zhiyuan, 2022. "Volatility of volatility: Estimation and tests based on noisy high frequency data with jumps," Journal of Econometrics, Elsevier, vol. 229(2), pages 422-451.
    17. Jan Matas & Jan Posp'iv{s}il, 2021. "Robustness and sensitivity analyses for rough Volterra stochastic volatility models," Papers 2107.12462, arXiv.org, revised Jun 2023.
    18. Giulia Di Nunno & Yuliya Mishura & Anton Yurchenko-Tytarenko, 2022. "Option pricing in Sandwiched Volterra Volatility model," Papers 2209.10688, arXiv.org, revised Dec 2023.
    19. Angelini, Daniele & Bianchi, Sergio, 2023. "Nonlinear biases in the roughness of a Fractional Stochastic Regularity Model," Chaos, Solitons & Fractals, Elsevier, vol. 172(C).
    20. Yicun Li & Yuanyang Teng, 2022. "Estimation of the Hurst Parameter in Spot Volatility," Mathematics, MDPI, vol. 10(10), pages 1-26, May.
    21. Wang, Xiaohu & Xiao, Weilin & Yu, Jun, 2023. "Modeling and forecasting realized volatility with the fractional Ornstein–Uhlenbeck process," Journal of Econometrics, Elsevier, vol. 232(2), pages 389-415.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:stmapp:v:30:y:2021:i:2:d:10.1007_s10260-020-00528-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.