IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v172y2023ics0960077923004514.html
   My bibliography  Save this article

Nonlinear biases in the roughness of a Fractional Stochastic Regularity Model

Author

Listed:
  • Angelini, Daniele
  • Bianchi, Sergio

Abstract

A Multifractional Process with Random Exponent (MPRE) is used to model the dynamics of log-prices in a financial market. Under this assumption, we show that the Hurst-Hölder exponent of the MPRE follows the fractional Ornstein–Uhlenbeck process which in the Fractional Stochastic Volatility Model of Comte and Renault (1998) describes the dynamics of the log-volatility. We provide evidence that several biases of the estimation procedures can generate artificial rough volatility in surrogated as well as real financial data.

Suggested Citation

  • Angelini, Daniele & Bianchi, Sergio, 2023. "Nonlinear biases in the roughness of a Fractional Stochastic Regularity Model," Chaos, Solitons & Fractals, Elsevier, vol. 172(C).
  • Handle: RePEc:eee:chsofr:v:172:y:2023:i:c:s0960077923004514
    DOI: 10.1016/j.chaos.2023.113550
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077923004514
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2023.113550?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mikkel Bennedsen & Asger Lunde & Mikko S Pakkanen, 2022. "Decoupling the Short- and Long-Term Behavior of Stochastic Volatility [Multifactor Approximation of Rough Volatility Models]," Journal of Financial Econometrics, Oxford University Press, vol. 20(5), pages 961-1006.
    2. S. Bianchi & A. Pantanella & A. Pianese, 2013. "Modeling stock prices by multifractional Brownian motion: an improved estimation of the pointwise regularity," Quantitative Finance, Taylor & Francis Journals, vol. 13(8), pages 1317-1330, July.
    3. Qidi Peng & Ran Zhao, 2017. "A General Class of Multifractional Processes and Stock Price Informativeness," Papers 1708.04217, arXiv.org, revised Aug 2018.
    4. Giuseppe Brandi & T. Di Matteo, 2022. "Multiscaling and rough volatility: an empirical investigation," Papers 2201.10466, arXiv.org.
    5. Buonocore, R.J. & Aste, T. & Di Matteo, T., 2016. "Measuring multiscaling in financial time-series," Chaos, Solitons & Fractals, Elsevier, vol. 88(C), pages 38-47.
    6. Antoine Ayache & Jacques Vehel, 2000. "The Generalized Multifractional Brownian Motion," Statistical Inference for Stochastic Processes, Springer, vol. 3(1), pages 7-18, January.
    7. Raffaele Mattera & Fabrizio Di Sciorio & Juan E. Trinidad-Segovia & Sameh S. Askar, 2022. "A Composite Index for Measuring Stock Market Inefficiency," Complexity, Hindawi, vol. 2022, pages 1-13, January.
    8. Peng Yue & Hai-Chuan Xu & Wei Chen & Xiong Xiong & Wei-Xing Zhou, 2017. "Linear and nonlinear correlations in order aggressiveness of Chinese stocks," Papers 1707.05604, arXiv.org.
    9. L. C. G. Rogers, 1997. "Arbitrage with Fractional Brownian Motion," Mathematical Finance, Wiley Blackwell, vol. 7(1), pages 95-105, January.
    10. Fabienne Comte & Eric Renault, 1998. "Long memory in continuous‐time stochastic volatility models," Mathematical Finance, Wiley Blackwell, vol. 8(4), pages 291-323, October.
    11. Li, Ming, 2020. "Multi-fractional generalized Cauchy process and its application to teletraffic," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 550(C).
    12. Sergio Bianchi & Alexandre Pantanella & Augusto Pianese, 2015. "Efficient Markets And Behavioral Finance: A Comprehensive Multifractional Model," Advances in Complex Systems (ACS), World Scientific Publishing Co. Pte. Ltd., vol. 18(01n02), pages 1-29.
    13. Loboda, Dennis & Mies, Fabian & Steland, Ansgar, 2021. "Regularity of multifractional moving average processes with random Hurst exponent," Stochastic Processes and their Applications, Elsevier, vol. 140(C), pages 21-48.
    14. S. Bianchi & A. Pianese, 2008. "Multifractional Properties Of Stock Indices Decomposed By Filtering Their Pointwise Hölder Regularity," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 11(06), pages 567-595.
    15. Bianchi, Sergio, 2004. "A new distribution-based test of self-similarity," MPRA Paper 16640, University Library of Munich, Germany.
    16. Giuseppe Brandi & T. Di Matteo, 2022. "On the statistics of scaling exponents and the multiscaling value at risk," The European Journal of Finance, Taylor & Francis Journals, vol. 28(13-15), pages 1361-1382, October.
    17. Fama, Eugene F, 1970. "Efficient Capital Markets: A Review of Theory and Empirical Work," Journal of Finance, American Finance Association, vol. 25(2), pages 383-417, May.
    18. Jean-François Coeurjolly, 2001. "Estimating the Parameters of a Fractional Brownian Motion by Discrete Variations of its Sample Paths," Statistical Inference for Stochastic Processes, Springer, vol. 4(2), pages 199-227, May.
    19. Matthieu Garcin, 2019. "Fractal analysis of the multifractality of foreign exchange rates [Analyse fractale de la multifractalité des taux de change]," Working Papers hal-02283915, HAL.
    20. Ayache, Antoine & Lévy Véhel, Jacques, 2004. "On the identification of the pointwise Hölder exponent of the generalized multifractional Brownian motion," Stochastic Processes and their Applications, Elsevier, vol. 111(1), pages 119-156, May.
    21. Peng, Qidi & Zhao, Ran, 2018. "A general class of multifractional processes and stock price informativeness," Chaos, Solitons & Fractals, Elsevier, vol. 115(C), pages 248-267.
    22. Ayache, Antoine & Bouly, Florent, 2022. "Moving average Multifractional Processes with Random Exponent: Lower bounds for local oscillations," Stochastic Processes and their Applications, Elsevier, vol. 146(C), pages 143-163.
    23. Anine E. Bolko & Kim Christensen & Mikko S. Pakkanen & Bezirgen Veliyev, 2020. "A GMM approach to estimate the roughness of stochastic volatility," Papers 2010.04610, arXiv.org, revised Apr 2022.
    24. Sergio Bianchi, 2005. "Pathwise Identification Of The Memory Function Of Multifractional Brownian Motion With Application To Finance," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 8(02), pages 255-281.
    25. R'emy Chicheportiche & Jean-Philippe Bouchaud, 2012. "Weighted Kolmogorov-Smirnov test: Accounting for the tails," Papers 1207.7308, arXiv.org, revised Oct 2012.
    26. Takaishi, Tetsuya, 2020. "Rough volatility of Bitcoin," Finance Research Letters, Elsevier, vol. 32(C).
    27. Cajueiro, Daniel O & Tabak, Benjamin M, 2004. "The Hurst exponent over time: testing the assertion that emerging markets are becoming more efficient," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 336(3), pages 521-537.
    28. Albert Benassi & Pierre Bertrand & Serge Cohen & Jacques Istas, 2000. "Identification of the Hurst Index of a Step Fractional Brownian Motion," Statistical Inference for Stochastic Processes, Springer, vol. 3(1), pages 101-111, January.
    29. Giulia Livieri & Saad Mouti & Andrea Pallavicini & Mathieu Rosenbaum, 2018. "Rough volatility: Evidence from option prices," IISE Transactions, Taylor & Francis Journals, vol. 50(9), pages 767-776, September.
    30. T. Di Matteo, 2007. "Multi-scaling in finance," Quantitative Finance, Taylor & Francis Journals, vol. 7(1), pages 21-36.
    31. Jim Gatheral & Thibault Jaisson & Mathieu Rosenbaum, 2018. "Volatility is rough," Quantitative Finance, Taylor & Francis Journals, vol. 18(6), pages 933-949, June.
    32. Antoine Ayache, 2013. "Continuous Gaussian Multifractional Processes with Random Pointwise Hölder Regularity," Journal of Theoretical Probability, Springer, vol. 26(1), pages 72-93, March.
    33. Mikkel Bennedsen & Asger Lunde & Mikko S. Pakkanen, 2016. "Decoupling the short- and long-term behavior of stochastic volatility," Papers 1610.00332, arXiv.org, revised Jan 2021.
    34. Hu, Yaozhong & Nualart, David, 2010. "Parameter estimation for fractional Ornstein-Uhlenbeck processes," Statistics & Probability Letters, Elsevier, vol. 80(11-12), pages 1030-1038, June.
    35. Masaaki Fukasawa & Tetsuya Takabatake & Rebecca Westphal, 2019. "Is Volatility Rough ?," Papers 1905.04852, arXiv.org, revised May 2019.
    36. Masaaki Fukasawa, 2021. "Volatility has to be rough," Quantitative Finance, Taylor & Francis Journals, vol. 21(1), pages 1-8, January.
    37. Matthieu Garcin, 2022. "Forecasting with fractional Brownian motion: a financial perspective," Quantitative Finance, Taylor & Francis Journals, vol. 22(8), pages 1495-1512, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Brandi, Giuseppe & Di Matteo, T., 2022. "Multiscaling and rough volatility: An empirical investigation," International Review of Financial Analysis, Elsevier, vol. 84(C).
    2. Vogl, Markus, 2023. "Hurst exponent dynamics of S&P 500 returns: Implications for market efficiency, long memory, multifractality and financial crises predictability by application of a nonlinear dynamics analysis framewo," Chaos, Solitons & Fractals, Elsevier, vol. 166(C).
    3. Yicun Li & Yuanyang Teng, 2022. "Estimation of the Hurst Parameter in Spot Volatility," Mathematics, MDPI, vol. 10(10), pages 1-26, May.
    4. Massimiliano Frezza & Sergio Bianchi & Augusto Pianese, 2022. "Forecasting Value-at-Risk in turbulent stock markets via the local regularity of the price process," Computational Management Science, Springer, vol. 19(1), pages 99-132, January.
    5. Ayoub Ammy-Driss & Matthieu Garcin, 2021. "Efficiency of the financial markets during the COVID-19 crisis: time-varying parameters of fractional stable dynamics," Working Papers hal-02903655, HAL.
    6. Ayoub Ammy-Driss & Matthieu Garcin, 2020. "Efficiency of the financial markets during the COVID-19 crisis: time-varying parameters of fractional stable dynamics," Papers 2007.10727, arXiv.org, revised Nov 2021.
    7. Antoniades, I.P. & Brandi, Giuseppe & Magafas, L. & Di Matteo, T., 2021. "The use of scaling properties to detect relevant changes in financial time series: A new visual warning tool," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 565(C).
    8. Frezza, Massimiliano & Bianchi, Sergio & Pianese, Augusto, 2021. "Fractal analysis of market (in)efficiency during the COVID-19," Finance Research Letters, Elsevier, vol. 38(C).
    9. Bianchi, Sergio & Pianese, Augusto, 2018. "Time-varying Hurst–Hölder exponents and the dynamics of (in)efficiency in stock markets," Chaos, Solitons & Fractals, Elsevier, vol. 109(C), pages 64-75.
    10. Wang, Xiaohu & Xiao, Weilin & Yu, Jun, 2023. "Modeling and forecasting realized volatility with the fractional Ornstein–Uhlenbeck process," Journal of Econometrics, Elsevier, vol. 232(2), pages 389-415.
    11. Ioannis P. Antoniades & Giuseppe Brandi & L. G. Magafas & T. Di Matteo, 2020. "The use of scaling properties to detect relevant changes in financial time series: a new visual warning tool," Papers 2010.08890, arXiv.org, revised Dec 2020.
    12. Carsten Chong & Marc Hoffmann & Yanghui Liu & Mathieu Rosenbaum & Gr'egoire Szymanski, 2022. "Statistical inference for rough volatility: Central limit theorems," Papers 2210.01216, arXiv.org, revised Jul 2023.
    13. Frezza, Massimiliano, 2012. "Modeling the time-changing dependence in stock markets," Chaos, Solitons & Fractals, Elsevier, vol. 45(12), pages 1510-1520.
    14. Sergio Bianchi & Massimiliano Frezza, 2018. "Liquidity, Efficiency and the 2007-2008 Global Financial Crisis," Annals of Economics and Finance, Society for AEF, vol. 19(2), pages 375-404, November.
    15. Carsten Chong & Marc Hoffmann & Yanghui Liu & Mathieu Rosenbaum & Gr'egoire Szymanski, 2022. "Statistical inference for rough volatility: Minimax Theory," Papers 2210.01214, arXiv.org, revised Feb 2024.
    16. Eduardo Abi Jaber, 2022. "The characteristic function of Gaussian stochastic volatility models: an analytic expression," Finance and Stochastics, Springer, vol. 26(4), pages 733-769, October.
    17. Matthieu Garcin, 2021. "Forecasting with fractional Brownian motion: a financial perspective," Papers 2105.09140, arXiv.org, revised Sep 2021.
    18. Alfeus, Mesias & Nikitopoulos, Christina Sklibosios, 2022. "Forecasting volatility in commodity markets with long-memory models," Journal of Commodity Markets, Elsevier, vol. 28(C).
    19. Wu, Peng & Muzy, Jean-François & Bacry, Emmanuel, 2022. "From rough to multifractal volatility: The log S-fBM model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 604(C).
    20. Sixian Jin & Qidi Peng & Henry Schellhorn, 2018. "Estimation of the pointwise Hölder exponent of hidden multifractional Brownian motion using wavelet coefficients," Statistical Inference for Stochastic Processes, Springer, vol. 21(1), pages 113-140, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:172:y:2023:i:c:s0960077923004514. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.