IDEAS home Printed from https://ideas.repec.org/a/spr/scient/v102y2015i3d10.1007_s11192-014-1493-2.html
   My bibliography  Save this article

Technology structural implications from the extension of a patent search method

Author

Listed:
  • Christopher L. Benson

    (Massachusetts Institute of Technology)

  • Christopher L. Magee

    (Massachusetts Institute of Technology)

Abstract

Many areas of academic and industrial work make use of the notion of a ‘technology’. This paper attempts to reduce the ambiguity around the definition of what constitutes a ‘technology’ by extension of a method described previously that finds highly relevant patent sets for specified technological fields. The method relies on a less ambiguous definition that includes both a functional component and a component consisting of the underlying knowledge in a technological field to form a two-component definition. These two components form a useful definition of a technology that allows for objective, repeatable and thus comparable analysis of specific technologies. 28 technological domains are investigated: the extension of an earlier technique is shown to be capable of finding highly relevant and complete patent sets for each of the technologies. Overall, about 500,000 patents from 1976 to 2012 are classified into these 28 domains. The patents in each of these sets are not only highly relevant to the domain of interest but there are relatively low numbers of patents classified into any two of these domains (total patents classified in two domains are 2.9 % of the total patents and the great majority of patent class pairs have zero overlap with a few of the 378 patent class pairs containing the bulk of the doubly listed patents). On the other hand, the patents within a given domain cite patents in other domains about 90 % of the time. These results suggest that technology can be usefully decomposed to distinct units but that the inventions in these relatively tightly contained units depend upon widely spread additional knowledge.

Suggested Citation

  • Christopher L. Benson & Christopher L. Magee, 2015. "Technology structural implications from the extension of a patent search method," Scientometrics, Springer;Akadémiai Kiadó, vol. 102(3), pages 1965-1985, March.
  • Handle: RePEc:spr:scient:v:102:y:2015:i:3:d:10.1007_s11192-014-1493-2
    DOI: 10.1007/s11192-014-1493-2
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11192-014-1493-2
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11192-014-1493-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Cockburn, Iain & Griliches, Zvi, 1988. "Industry Effects and Appropriability Measures in the Stock Market's Valuation of R&D and Patents," American Economic Review, American Economic Association, vol. 78(2), pages 419-423, May.
    2. Robert M. Solow, 1956. "A Contribution to the Theory of Economic Growth," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 70(1), pages 65-94.
    3. James M. Utterback & Happy J. Acee, 2005. "Disruptive Technologies: An Expanded View," International Journal of Innovation Management (ijim), World Scientific Publishing Co. Pte. Ltd., vol. 9(01), pages 1-17.
    4. Jacobsson, Staffan & Johnson, Anna, 2000. "The diffusion of renewable energy technology: an analytical framework and key issues for research," Energy Policy, Elsevier, vol. 28(9), pages 625-640, July.
    5. Arthur, W. Brian, 2007. "The structure of invention," Research Policy, Elsevier, vol. 36(2), pages 274-287, March.
    6. Richard Nelson, 1962. "The Link Between Science and Invention: The Case of the Transistor," NBER Chapters, in: The Rate and Direction of Inventive Activity: Economic and Social Factors, pages 549-584, National Bureau of Economic Research, Inc.
    7. Pavitt, Keith, 1984. "Sectoral patterns of technical change: Towards a taxonomy and a theory," Research Policy, Elsevier, vol. 13(6), pages 343-373, December.
    8. Neij, Lena, 1997. "Use of experience curves to analyse the prospects for diffusion and adoption of renewable energy technology," Energy Policy, Elsevier, vol. 25(13), pages 1099-1107, November.
    9. Christopher L. Benson & Christopher L. Magee, 2013. "Erratum to: A hybrid keyword and patent class methodology for selecting relevant sets of patents for a technological field," Scientometrics, Springer;Akadémiai Kiadó, vol. 96(1), pages 83-83, July.
    10. Chunjuan Luan & Zeyuan Liu & Xianwen Wang, 2013. "Divergence and convergence: technology-relatedness evolution in solar energy industry," Scientometrics, Springer;Akadémiai Kiadó, vol. 97(2), pages 461-475, November.
    11. Levin, Richard C, 1988. "Appropriability, R&D Spending, and Technological Performance," American Economic Review, American Economic Association, vol. 78(2), pages 424-428, May.
    12. Christopher L. Benson & Christopher L. Magee, 2013. "A hybrid keyword and patent class methodology for selecting relevant sets of patents for a technological field," Scientometrics, Springer;Akadémiai Kiadó, vol. 96(1), pages 69-82, July.
    13. Benson, Christopher L. & Magee, Christopher L., 2014. "On improvement rates for renewable energy technologies: Solar PV, wind turbines, capacitors, and batteries," Renewable Energy, Elsevier, vol. 68(C), pages 745-751.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Park, Inchae & Triulzi, Giorgio & Magee, Christopher L., 2022. "Tracing the emergence of new technology: A comparative analysis of five technological domains," Technological Forecasting and Social Change, Elsevier, vol. 184(C).
    2. Subarna Basnet & Christopher L Magee, 2017. "Artifact interactions retard technological improvement: An empirical study," PLOS ONE, Public Library of Science, vol. 12(8), pages 1-17, August.
    3. Tao Li & Jianqiang Luo & Kaitong Liang & Chaonan Yi & Lei Ma, 2023. "Synergy of Patent and Open-Source-Driven Sustainable Climate Governance under Green AI: A Case Study of TinyML," Sustainability, MDPI, vol. 15(18), pages 1-21, September.
    4. Singh, Anuraag & Triulzi, Giorgio & Magee, Christopher L., 2021. "Technological improvement rate predictions for all technologies: Use of patent data and an extended domain description," Research Policy, Elsevier, vol. 50(9).
    5. Choi, Seokkyu & Lee, Hyeonju & Park, Eunjeong & Choi, Sungchul, 2022. "Deep learning for patent landscaping using transformer and graph embedding," Technological Forecasting and Social Change, Elsevier, vol. 175(C).
    6. Triulzi, Giorgio & Alstott, Jeff & Magee, Christopher L., 2020. "Estimating technology performance improvement rates by mining patent data," Technological Forecasting and Social Change, Elsevier, vol. 158(C).
    7. Feng, Sida & Magee, Christopher L., 2020. "Technological development of key domains in electric vehicles: Improvement rates, technology trajectories and key assignees," Applied Energy, Elsevier, vol. 260(C).
    8. Martin Ho & Henry CW Price & Tim S Evans & Eoin O'Sullivan, 2023. "Order in Innovation," Papers 2302.13076, arXiv.org.
    9. Mun, Changbae & Yoon, Sejun & Raghavan, Nagarajan & Hwang, Dongwook & Basnet, Subarna & Park, Hyunseok, 2021. "Function score-based technological trend analysis," Technovation, Elsevier, vol. 101(C).
    10. Changbae Mun & Sejun Yoon & Hyunseok Park, 2019. "Structural decomposition of technological domain using patent co-classification and classification hierarchy," Scientometrics, Springer;Akadémiai Kiadó, vol. 121(2), pages 633-652, November.
    11. Donghyun You & Hyunseok Park, 2018. "Developmental Trajectories in Electrical Steel Technology Using Patent Information," Sustainability, MDPI, vol. 10(8), pages 1-15, August.
    12. Fang Han & Christopher L. Magee, 2018. "Testing the science/technology relationship by analysis of patent citations of scientific papers after decomposition of both science and technology," Scientometrics, Springer;Akadémiai Kiadó, vol. 116(2), pages 767-796, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Singh, Anuraag & Triulzi, Giorgio & Magee, Christopher L., 2021. "Technological improvement rate predictions for all technologies: Use of patent data and an extended domain description," Research Policy, Elsevier, vol. 50(9).
    2. Christopher L Benson & Christopher L Magee, 2015. "Quantitative Determination of Technological Improvement from Patent Data," PLOS ONE, Public Library of Science, vol. 10(4), pages 1-23, April.
    3. Harabi, Najib, 1994. "Technischer Fortschritt in der Schweiz: Empirische Ergebnisse aus industrieökonomischer Sicht [Technischer Fortschritt in der Schweiz:Empirische Ergebnisse aus industrieökonomischer Sicht]," MPRA Paper 6725, University Library of Munich, Germany.
    4. Dosi, Giovanni & Nelson, Richard R., 2010. "Technical Change and Industrial Dynamics as Evolutionary Processes," Handbook of the Economics of Innovation, in: Bronwyn H. Hall & Nathan Rosenberg (ed.), Handbook of the Economics of Innovation, edition 1, volume 1, chapter 0, pages 51-127, Elsevier.
    5. Magee, C.L. & Basnet, S. & Funk, J.L. & Benson, C.L., 2016. "Quantitative empirical trends in technical performance," Technological Forecasting and Social Change, Elsevier, vol. 104(C), pages 237-246.
    6. Floortje Alkemade & Marko Hekkert, 2009. "Development paths for emerging innovation systems: implications for environmental innovations," Innovation Studies Utrecht (ISU) working paper series 09-08, Utrecht University, Department of Innovation Studies, revised Apr 2009.
    7. Benson, Christopher L. & Magee, Christopher L., 2014. "On improvement rates for renewable energy technologies: Solar PV, wind turbines, capacitors, and batteries," Renewable Energy, Elsevier, vol. 68(C), pages 745-751.
    8. Fang Han & Christopher L. Magee, 2018. "Testing the science/technology relationship by analysis of patent citations of scientific papers after decomposition of both science and technology," Scientometrics, Springer;Akadémiai Kiadó, vol. 116(2), pages 767-796, August.
    9. Park, Inchae & Triulzi, Giorgio & Magee, Christopher L., 2022. "Tracing the emergence of new technology: A comparative analysis of five technological domains," Technological Forecasting and Social Change, Elsevier, vol. 184(C).
    10. Nemet, Gregory F., 2009. "Demand-pull, technology-push, and government-led incentives for non-incremental technical change," Research Policy, Elsevier, vol. 38(5), pages 700-709, June.
    11. Feng, Sida & Magee, Christopher L., 2020. "Technological development of key domains in electric vehicles: Improvement rates, technology trajectories and key assignees," Applied Energy, Elsevier, vol. 260(C).
    12. Cohen, Wesley M., 2010. "Fifty Years of Empirical Studies of Innovative Activity and Performance," Handbook of the Economics of Innovation, in: Bronwyn H. Hall & Nathan Rosenberg (ed.), Handbook of the Economics of Innovation, edition 1, volume 1, chapter 0, pages 129-213, Elsevier.
    13. Taalbi, Josef, 2017. "What drives innovation? Evidence from economic history," Research Policy, Elsevier, vol. 46(8), pages 1437-1453.
    14. Giovanni Dosi & Richard Nelson, 2013. "The Evolution of Technologies: An Assessment of the State-of-the-Art," Eurasian Business Review, Springer;Eurasia Business and Economics Society, vol. 3(1), pages 3-46, June.
    15. Bekkers, Rudi & Bodas Freitas, Isabel Maria, 2008. "Analysing knowledge transfer channels between universities and industry: To what degree do sectors also matter?," Research Policy, Elsevier, vol. 37(10), pages 1837-1853, December.
    16. Nemet, Gregory F. & Zipperer, Vera & Kraus, Martina, 2018. "The valley of death, the technology pork barrel, and public support for large demonstration projects," Energy Policy, Elsevier, vol. 119(C), pages 154-167.
    17. Subarna Basnet & Christopher L Magee, 2017. "Artifact interactions retard technological improvement: An empirical study," PLOS ONE, Public Library of Science, vol. 12(8), pages 1-17, August.
    18. Sophie Urmetzer & Michael P. Schlaile & Kristina B. Bogner & Matthias Mueller & Andreas Pyka, 2018. "Exploring the Dedicated Knowledge Base of a Transformation towards a Sustainable Bioeconomy," Sustainability, MDPI, vol. 10(6), pages 1-22, May.
    19. Adele Parmentola & Marco Ferretti & Eva Panetti, 0. "Exploring the university-industry cooperation in a low innovative region. What differences between low tech and high tech industries?," International Entrepreneurship and Management Journal, Springer, vol. 0, pages 1-28.
    20. Yu, Yang & Li, Hong & Che, Yuyuan & Zheng, Qiongjie, 2017. "The price evolution of wind turbines in China: A study based on the modified multi-factor learning curve," Renewable Energy, Elsevier, vol. 103(C), pages 522-536.

    More about this item

    Keywords

    Patent searching; Technology decomposition; Technological relatedness;
    All these keywords.

    JEL classification:

    • O31 - Economic Development, Innovation, Technological Change, and Growth - - Innovation; Research and Development; Technological Change; Intellectual Property Rights - - - Innovation and Invention: Processes and Incentives
    • O32 - Economic Development, Innovation, Technological Change, and Growth - - Innovation; Research and Development; Technological Change; Intellectual Property Rights - - - Management of Technological Innovation and R&D
    • O34 - Economic Development, Innovation, Technological Change, and Growth - - Innovation; Research and Development; Technological Change; Intellectual Property Rights - - - Intellectual Property and Intellectual Capital

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:scient:v:102:y:2015:i:3:d:10.1007_s11192-014-1493-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.