IDEAS home Printed from https://ideas.repec.org/a/spr/pubtra/v8y2016i2d10.1007_s12469-016-0126-y.html
   My bibliography  Save this article

Have they bunched yet? An exploratory study of the impacts of bus bunching on dwell and running times

Author

Listed:
  • David Verbich

    (McGill University)

  • Ehab Diab

    (University of Toronto)

  • Ahmed El-Geneidy

    (McGill University)

Abstract

If transit agencies wish to retain and attract riders, they need to provide reliable and efficient services. Transit agencies tend to run high-frequency bus routes during peak hours, and in many cities, different routes can also overlap along major corridors. In some instances, consecutive buses can arrive at a shared stop simultaneously or one bus may arrive while another bus is currently servicing the stop. This phenomenon, known as bus bunching, can delay buses and passengers, and is usually inefficient. In this study, we attempt to understand how bus bunching from the same or different routes can impact bus operations, specifically dwell and running times. This research uses stop-level records obtained from automatic vehicle location (AVL) and automatic passenger counter (APC) systems from TriMet, Portland, OR. Using linear modeling, we find that bus bunching increases both dwell and running times. Specifically, when different routes bunch or are scheduled to arrive at a bus stop within a short time frame, or when buses from the same route arrive with a short time frame, dwell times increase by ~10 s. Similarly, bus bunching from the same route or different route prolongs running times by ~40 s. Our findings suggest that bus schedulers and operators should consider adding more time between consecutive buses from different routes at shared stops to minimize the negative impacts that we observed from bus bunching.

Suggested Citation

  • David Verbich & Ehab Diab & Ahmed El-Geneidy, 2016. "Have they bunched yet? An exploratory study of the impacts of bus bunching on dwell and running times," Public Transport, Springer, vol. 8(2), pages 225-242, September.
  • Handle: RePEc:spr:pubtra:v:8:y:2016:i:2:d:10.1007_s12469-016-0126-y
    DOI: 10.1007/s12469-016-0126-y
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s12469-016-0126-y
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s12469-016-0126-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hensher, David A. & Stopher, Peter & Bullock, Philip, 2003. "Service quality--developing a service quality index in the provision of commercial bus contracts," Transportation Research Part A: Policy and Practice, Elsevier, vol. 37(6), pages 499-517, July.
    2. Hollander, Yaron, 2006. "Direct versus indirect models for the effects of unreliability," Transportation Research Part A: Policy and Practice, Elsevier, vol. 40(9), pages 699-711, November.
    3. Daganzo, Carlos F., 2009. "A headway-based approach to eliminate bus bunching: Systematic analysis and comparisons," Transportation Research Part B: Methodological, Elsevier, vol. 43(10), pages 913-921, December.
    4. Paulley, Neil & Balcombe, Richard & Mackett, Roger & Titheridge, Helena & Preston, John & Wardman, Mark & Shires, Jeremy & White, Peter, 2006. "The demand for public transport: The effects of fares, quality of service, income and car ownership," Transport Policy, Elsevier, vol. 13(4), pages 295-306, July.
    5. Berrebi, Simon J. & Watkins, Kari E. & Laval, Jorge A., 2015. "A real-time bus dispatching policy to minimize passenger wait on a high frequency route," Transportation Research Part B: Methodological, Elsevier, vol. 81(P2), pages 377-389.
    6. Diab, Ehab I. & El-Geneidy, Ahmed M., 2012. "Understanding the impacts of a combination of service improvement strategies on bus running time and passenger’s perception," Transportation Research Part A: Policy and Practice, Elsevier, vol. 46(3), pages 614-625.
    7. Mark D. Hickman, 2001. "An Analytic Stochastic Model for the Transit Vehicle Holding Problem," Transportation Science, INFORMS, vol. 35(3), pages 215-237, August.
    8. Ehab I. Diab & Madhav G. Badami & Ahmed M. El-Geneidy, 2015. "Bus Transit Service Reliability and Improvement Strategies: Integrating the Perspectives of Passengers and Transit Agencies in North America," Transport Reviews, Taylor & Francis Journals, vol. 35(3), pages 292-328, May.
    9. Xu Jun Eberlein & Nigel H. M. Wilson & David Bernstein, 2001. "The Holding Problem with Real–Time Information Available," Transportation Science, INFORMS, vol. 35(1), pages 1-18, February.
    10. Daganzo, Carlos F. & Pilachowski, Josh, 2011. "Reducing bunching with bus-to-bus cooperation," Transportation Research Part B: Methodological, Elsevier, vol. 45(1), pages 267-277, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Berrebi, Simon J. & Crudden, Sean Óg & Watkins, Kari E., 2018. "Translating research to practice: Implementing real-time control on high-frequency transit routes," Transportation Research Part A: Policy and Practice, Elsevier, vol. 111(C), pages 213-226.
    2. Andres, Matthias & Nair, Rahul, 2017. "A predictive-control framework to address bus bunching," Transportation Research Part B: Methodological, Elsevier, vol. 104(C), pages 123-148.
    3. Luigi Moccia & Duncan W. Allen & Eric C. Bruun, 2018. "A technology selection and design model of a semi-rapid transit line," Public Transport, Springer, vol. 10(3), pages 455-497, December.
    4. Liping Ge & Stefan Voß & Lin Xie, 2022. "Robustness and disturbances in public transport," Public Transport, Springer, vol. 14(1), pages 191-261, March.
    5. Fatemeh Enayatollahi & Ahmed Osman Idris & M. A. Amiri Atashgah, 2019. "Modelling bus bunching under variable transit demand using cellular automata," Public Transport, Springer, vol. 11(2), pages 269-298, August.
    6. S. Sajikumar & D. Bijulal, 2022. "Zero bunching solution for a local public transport system with multiple-origins bus operation," Public Transport, Springer, vol. 14(3), pages 655-681, October.
    7. Ehab Diab & Jamie DeWeese & Nick Chaloux & Ahmed El-Geneidy, 2021. "Adjusting the service? Understanding the factors affecting bus ridership over time at the route level in Montréal, Canada," Transportation, Springer, vol. 48(5), pages 2765-2786, October.
    8. Yerkezhan Seitbekova & Bakhytzhan Assilbekov & Iskander Beisembetov & Alibek Kuljabekov, 2020. "The bus arrival time prediction using LSTM neural network and location analysis," Journal of Advances in Technology and Engineering Research, A/Professor Akbar A. Khatibi, vol. 6(2), pages 46-57.
    9. Sean Óg Crudden & Simon Berrebi, 2023. "An Open-Source Framework to Implement Kalman Filter Bus Arrival Predictions," Networks and Spatial Economics, Springer, vol. 23(2), pages 429-443, June.
    10. Paula Nguyen & Ehab Diab & Amer Shalaby, 2019. "Understanding the factors that influence the probability and time to streetcar bunching incidents," Public Transport, Springer, vol. 11(2), pages 299-320, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Shukai & Liu, Ronghui & Yang, Lixing & Gao, Ziyou, 2019. "Robust dynamic bus controls considering delay disturbances and passenger demand uncertainty," Transportation Research Part B: Methodological, Elsevier, vol. 123(C), pages 88-109.
    2. Zhang, Shuyang & Lo, Hong K., 2018. "Two-way-looking self-equalizing headway control for bus operations," Transportation Research Part B: Methodological, Elsevier, vol. 110(C), pages 280-301.
    3. Chow, Andy H.F. & Li, Shuai & Zhong, Renxin, 2017. "Multi-objective optimal control formulations for bus service reliability with traffic signals," Transportation Research Part B: Methodological, Elsevier, vol. 103(C), pages 248-268.
    4. Andres, Matthias & Nair, Rahul, 2017. "A predictive-control framework to address bus bunching," Transportation Research Part B: Methodological, Elsevier, vol. 104(C), pages 123-148.
    5. Wu, Weitiao & Liu, Ronghui & Jin, Wenzhou, 2017. "Modelling bus bunching and holding control with vehicle overtaking and distributed passenger boarding behaviour," Transportation Research Part B: Methodological, Elsevier, vol. 104(C), pages 175-197.
    6. Wu, Weitiao & Liu, Ronghui & Jin, Wenzhou, 2016. "Designing robust schedule coordination scheme for transit networks with safety control margins," Transportation Research Part B: Methodological, Elsevier, vol. 93(PA), pages 495-519.
    7. Seyed Mohammad Hossein Moosavi & Amiruddin Ismail & Choon Wah Yuen, 2020. "Using simulation model as a tool for analyzing bus service reliability and implementing improvement strategies," PLOS ONE, Public Library of Science, vol. 15(5), pages 1-26, May.
    8. Schmöcker, Jan-Dirk & Sun, Wenzhe & Fonzone, Achille & Liu, Ronghui, 2016. "Bus bunching along a corridor served by two lines," Transportation Research Part B: Methodological, Elsevier, vol. 93(PA), pages 300-317.
    9. Zhou, Chang & Tian, Qiong & Wang, David Z.W., 2022. "A novel control strategy in mitigating bus bunching: Utilizing real-time information," Transport Policy, Elsevier, vol. 123(C), pages 1-13.
    10. Dai, Zhuang & Liu, Xiaoyue Cathy & Chen, Zhuo & Guo, Renyong & Ma, Xiaolei, 2019. "A predictive headway-based bus-holding strategy with dynamic control point selection: A cooperative game theory approach," Transportation Research Part B: Methodological, Elsevier, vol. 125(C), pages 29-51.
    11. Petit, Antoine & Lei, Chao & Ouyang, Yanfeng, 2019. "Multiline Bus Bunching Control via Vehicle Substitution," Transportation Research Part B: Methodological, Elsevier, vol. 126(C), pages 68-86.
    12. Sirmatel, Isik Ilber & Geroliminis, Nikolas, 2018. "Mixed logical dynamical modeling and hybrid model predictive control of public transport operations," Transportation Research Part B: Methodological, Elsevier, vol. 114(C), pages 325-345.
    13. Gkiotsalitis, K. & Cats, O., 2021. "At-stop control measures in public transport: Literature review and research agenda," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 145(C).
    14. Petit, Antoine & Ouyang, Yanfeng & Lei, Chao, 2018. "Dynamic bus substitution strategy for bunching intervention," Transportation Research Part B: Methodological, Elsevier, vol. 115(C), pages 1-16.
    15. Martínez-Estupiñan, Yerly & Delgado, Felipe & Muñoz, Juan Carlos & Watkins, Kari E., 2023. "Improving the performance of headway control tools by using individual driving speed data," Transportation Research Part A: Policy and Practice, Elsevier, vol. 174(C).
    16. Xuan, Yiguang & Argote, Juan & Daganzo, Carlos F., 2011. "A Dynamic Holding Strategy to Improve Bus ScheduleReliability and Commercial Speed," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt0jp7c8k8, Institute of Transportation Studies, UC Berkeley.
    17. Wang, Shuaian & Meng, Qiang, 2012. "Liner ship route schedule design with sea contingency time and port time uncertainty," Transportation Research Part B: Methodological, Elsevier, vol. 46(5), pages 615-633.
    18. Sánchez-Martínez, G.E. & Koutsopoulos, H.N. & Wilson, N.H.M., 2016. "Real-time holding control for high-frequency transit with dynamics," Transportation Research Part B: Methodological, Elsevier, vol. 83(C), pages 1-19.
    19. Wei Wu & Wanjing Ma & Kejun Long & Heping Zhou & Yi Zhang, 2016. "Designing Sustainable Public Transportation: Integrated Optimization of Bus Speed and Holding Time in a Connected Vehicle Environment," Sustainability, MDPI, vol. 8(11), pages 1-15, November.
    20. Viktoriya Degeler & Léonie Heydenrijk-Ottens & Ding Luo & Niels Oort & Hans Lint, 2021. "Unsupervised approach towards analysing the public transport bunching swings formation phenomenon," Public Transport, Springer, vol. 13(3), pages 533-555, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:pubtra:v:8:y:2016:i:2:d:10.1007_s12469-016-0126-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.