IDEAS home Printed from https://ideas.repec.org/a/spr/pubtra/v13y2021i3d10.1007_s12469-020-00251-z.html
   My bibliography  Save this article

Unsupervised approach towards analysing the public transport bunching swings formation phenomenon

Author

Listed:
  • Viktoriya Degeler

    (University of Groningen)

  • Léonie Heydenrijk-Ottens

    (Delft University of Technology)

  • Ding Luo

    (Delft University of Technology)

  • Niels Oort

    (Delft University of Technology)

  • Hans Lint

    (Delft University of Technology)

Abstract

We perform an analysis of public transport data from The Hague, the Netherlands, combined from three sources: static network information, automatic vehicles location and automated fare collection data. We highlight the effect of bunching swings, and show that this phenomenon can be extracted using unsupervised machine learning techniques, namely clustering. We also show the correlation between bunching rate and passenger load, and bunching probability patterns for working days and weekends. We present the approach for extracting isolated bunching swings formations (BSF) and show different cases of BSFs, some of which can persist for a considerable time. We applied our approach to the tram line 1 of The Hague, and computed and presented four different patterns of BSFs, which we name “high passenger load”, “whole route”, “evening, end of route”, “long duration”. We analyse each bunching swings formation type in detail.

Suggested Citation

  • Viktoriya Degeler & Léonie Heydenrijk-Ottens & Ding Luo & Niels Oort & Hans Lint, 2021. "Unsupervised approach towards analysing the public transport bunching swings formation phenomenon," Public Transport, Springer, vol. 13(3), pages 533-555, October.
  • Handle: RePEc:spr:pubtra:v:13:y:2021:i:3:d:10.1007_s12469-020-00251-z
    DOI: 10.1007/s12469-020-00251-z
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s12469-020-00251-z
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s12469-020-00251-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhang, Shuyang & Lo, Hong K., 2018. "Two-way-looking self-equalizing headway control for bus operations," Transportation Research Part B: Methodological, Elsevier, vol. 110(C), pages 280-301.
    2. E. E. Osuna & G. F. Newell, 1972. "Control Strategies for an Idealized Public Transportation System," Transportation Science, INFORMS, vol. 6(1), pages 52-72, February.
    3. Daganzo, Carlos F., 2009. "A headway-based approach to eliminate bus bunching: Systematic analysis and comparisons," Transportation Research Part B: Methodological, Elsevier, vol. 43(10), pages 913-921, December.
    4. Bartholdi, John J. & Eisenstein, Donald D., 2012. "A self-coördinating bus route to resist bus bunching," Transportation Research Part B: Methodological, Elsevier, vol. 46(4), pages 481-491.
    5. Andres, Matthias & Nair, Rahul, 2017. "A predictive-control framework to address bus bunching," Transportation Research Part B: Methodological, Elsevier, vol. 104(C), pages 123-148.
    6. Ehab I. Diab & Madhav G. Badami & Ahmed M. El-Geneidy, 2015. "Bus Transit Service Reliability and Improvement Strategies: Integrating the Perspectives of Passengers and Transit Agencies in North America," Transport Reviews, Taylor & Francis Journals, vol. 35(3), pages 292-328, May.
    7. Daganzo, Carlos F. & Pilachowski, Josh, 2011. "Reducing bunching with bus-to-bus cooperation," Transportation Research Part B: Methodological, Elsevier, vol. 45(1), pages 267-277, January.
    8. Pilachowski, Joshua Michael, 2009. "An Approach to Reducing Bus Bunching," University of California Transportation Center, Working Papers qt6zc5j8xg, University of California Transportation Center.
    9. R. A. Chapman & J. F. Michel, 1978. "Modelling the Tendency of Buses to Form Pairs," Transportation Science, INFORMS, vol. 12(2), pages 165-175, May.
    10. van Oort, Niels, 2014. "Incorporating service reliability in public transport design and performance requirements: International survey results and recommendations," Research in Transportation Economics, Elsevier, vol. 48(C), pages 92-100.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Stefan Voß, 2023. "Bus Bunching and Bus Bridging: What Can We Learn from Generative AI Tools like ChatGPT?," Sustainability, MDPI, vol. 15(12), pages 1-19, June.
    2. Liping Ge & Stefan Voß & Lin Xie, 2022. "Robustness and disturbances in public transport," Public Transport, Springer, vol. 14(1), pages 191-261, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dai, Zhuang & Liu, Xiaoyue Cathy & Chen, Zhuo & Guo, Renyong & Ma, Xiaolei, 2019. "A predictive headway-based bus-holding strategy with dynamic control point selection: A cooperative game theory approach," Transportation Research Part B: Methodological, Elsevier, vol. 125(C), pages 29-51.
    2. Schmöcker, Jan-Dirk & Sun, Wenzhe & Fonzone, Achille & Liu, Ronghui, 2016. "Bus bunching along a corridor served by two lines," Transportation Research Part B: Methodological, Elsevier, vol. 93(PA), pages 300-317.
    3. Varga, Balázs & Tettamanti, Tamás & Kulcsár, Balázs, 2019. "Energy-aware predictive control for electrified bus networks," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
    4. Zhang, Shuyang & Lo, Hong K., 2018. "Two-way-looking self-equalizing headway control for bus operations," Transportation Research Part B: Methodological, Elsevier, vol. 110(C), pages 280-301.
    5. Andres, Matthias & Nair, Rahul, 2017. "A predictive-control framework to address bus bunching," Transportation Research Part B: Methodological, Elsevier, vol. 104(C), pages 123-148.
    6. Bian, Bomin & Zhu, Ning & Meng, Qiang, 2023. "Real-time cruising speed design approach for multiline bus systems," Transportation Research Part B: Methodological, Elsevier, vol. 170(C), pages 1-24.
    7. Li, Shukai & Liu, Ronghui & Yang, Lixing & Gao, Ziyou, 2019. "Robust dynamic bus controls considering delay disturbances and passenger demand uncertainty," Transportation Research Part B: Methodological, Elsevier, vol. 123(C), pages 88-109.
    8. Sánchez-Martínez, G.E. & Koutsopoulos, H.N. & Wilson, N.H.M., 2016. "Real-time holding control for high-frequency transit with dynamics," Transportation Research Part B: Methodological, Elsevier, vol. 83(C), pages 1-19.
    9. Fatemeh Enayatollahi & Ahmed Osman Idris & M. A. Amiri Atashgah, 2019. "Modelling bus bunching under variable transit demand using cellular automata," Public Transport, Springer, vol. 11(2), pages 269-298, August.
    10. Paula Nguyen & Ehab Diab & Amer Shalaby, 2019. "Understanding the factors that influence the probability and time to streetcar bunching incidents," Public Transport, Springer, vol. 11(2), pages 299-320, August.
    11. Klumpenhouwer, W. & Wirasinghe, S.C., 2018. "Optimal time point configuration of a bus route - A Markovian approach," Transportation Research Part B: Methodological, Elsevier, vol. 117(PA), pages 209-227.
    12. Zhou, Chang & Tian, Qiong & Wang, David Z.W., 2022. "A novel control strategy in mitigating bus bunching: Utilizing real-time information," Transport Policy, Elsevier, vol. 123(C), pages 1-13.
    13. Petit, Antoine & Lei, Chao & Ouyang, Yanfeng, 2019. "Multiline Bus Bunching Control via Vehicle Substitution," Transportation Research Part B: Methodological, Elsevier, vol. 126(C), pages 68-86.
    14. Argote-Cabanero, Juan & Daganzo, Carlos F & Lynn, Jacob W, 2015. "Dynamic Control of Complex Transit Systems," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt6j16889k, Institute of Transportation Studies, UC Berkeley.
    15. Jenelius, Erik, 2018. "Public transport experienced service reliability: Integrating travel time and travel conditions," Transportation Research Part A: Policy and Practice, Elsevier, vol. 117(C), pages 275-291.
    16. Gkiotsalitis, K. & Cats, O., 2021. "At-stop control measures in public transport: Literature review and research agenda," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 145(C).
    17. Petit, Antoine & Ouyang, Yanfeng & Lei, Chao, 2018. "Dynamic bus substitution strategy for bunching intervention," Transportation Research Part B: Methodological, Elsevier, vol. 115(C), pages 1-16.
    18. Liang, Shidong & He, Shengxue & Zhang, Hu & Ma, Minghui, 2021. "Optimal holding time calculation algorithm to improve the reliability of high frequency bus route considering the bus capacity constraint," Reliability Engineering and System Safety, Elsevier, vol. 212(C).
    19. Vismara, Luca & Chew, Lock Yue & Saw, Vee-Liem, 2021. "Optimal assignment of buses to bus stops in a loop by reinforcement learning," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 583(C).
    20. Weiya Chen & Hengpeng Zhang & Chunxiao Chen & Xiaofan Wei, 2021. "An Integrated Bus Holding and Speed Adjusting Strategy Considering Passenger’s Waiting Time Perceptions," Sustainability, MDPI, vol. 13(10), pages 1-20, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:pubtra:v:13:y:2021:i:3:d:10.1007_s12469-020-00251-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.