IDEAS home Printed from https://ideas.repec.org/a/spr/pubtra/v10y2018i2d10.1007_s12469-018-0185-3.html
   My bibliography  Save this article

Impact analysis of reductions in tram services in rural areas in Japan using smart card data

Author

Listed:
  • Hiroaki Nishiuchi

    (Kochi University of Technology)

  • Yasuyuki Kobayashi

    (Nihon University)

  • Tomoyuki Todoroki

    (Nihon University)

  • Tomoya Kawasaki

    (Tokyo Institute of Technology)

Abstract

Rural cities in Japan need to maintain public transport services because the proportion of elderly people in the population is increasing. However, measures to reduce the frequency of public transport services are under consideration in such cities because the number of passengers and the income necessary to keep services in operation are both decreasing. This study empirically analyzes the change in the number of tram passengers after the frequency of service was reduced in the study area. Especially, an analysis is applied to a survival time model using smart card data to evaluate what origin–destination pairs between tram stops (tram OD) can maintain a suitable number of passengers. The parameters estimated in the model show that a reduction in the number of trams does not directly lead to a change in the number of tram OD passengers. However, the average number of tram OD passengers and its variance are significant factors in explaining the decrease in the number of tram OD passengers. Sensitivity analysis by using the estimated model during the period of study shows that a tram OD pair that originates in a suburban area and terminates in a city center tends to have a higher probability of survival, but a tram OD pair originating from a city center tends to have a lower probability of survival. The results of this study are fundamental materials for a discussion on which tram OD pairs should be considered by public transport authorities to maintain or increase the number of passengers.

Suggested Citation

  • Hiroaki Nishiuchi & Yasuyuki Kobayashi & Tomoyuki Todoroki & Tomoya Kawasaki, 2018. "Impact analysis of reductions in tram services in rural areas in Japan using smart card data," Public Transport, Springer, vol. 10(2), pages 291-309, August.
  • Handle: RePEc:spr:pubtra:v:10:y:2018:i:2:d:10.1007_s12469-018-0185-3
    DOI: 10.1007/s12469-018-0185-3
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s12469-018-0185-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s12469-018-0185-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Thøgersen, John, 2009. "Promoting public transport as a subscription service: Effects of a free month travel card," Transport Policy, Elsevier, vol. 16(6), pages 335-343, November.
    2. Tétreault, Paul R. & El-Geneidy, Ahmed M., 2010. "Estimating bus run times for new limited-stop service using archived AVL and APC data," Transportation Research Part A: Policy and Practice, Elsevier, vol. 44(6), pages 390-402, July.
    3. Wang, Zi-jia & Li, Xiao-hong & Chen, Feng, 2015. "Impact evaluation of a mass transit fare change on demand and revenue utilizing smart card data," Transportation Research Part A: Policy and Practice, Elsevier, vol. 77(C), pages 213-224.
    4. Takahiko Kusakabe & Takamasa Iryo & Yasuo Asakura, 2010. "Estimation method for railway passengers’ train choice behavior with smart card transaction data," Transportation, Springer, vol. 37(5), pages 731-749, September.
    5. Cortés, Cristián E. & Jara-Díaz, Sergio & Tirachini, Alejandro, 2011. "Integrating short turning and deadheading in the optimization of transit services," Transportation Research Part A: Policy and Practice, Elsevier, vol. 45(5), pages 419-434, June.
    6. Morency, Catherine & Trépanier, Martin & Agard, Bruno, 2007. "Measuring transit use variability with smart-card data," Transport Policy, Elsevier, vol. 14(3), pages 193-203, May.
    7. Cools, Mario & Fabbro, Yannick & Bellemans, Tom, 2016. "Free public transport: A socio-cognitive analysis," Transportation Research Part A: Policy and Practice, Elsevier, vol. 86(C), pages 96-107.
    8. Chalak, Ali & Al-Naghi, Hani & Irani, Alexandra & Abou-Zeid, Maya, 2016. "Commuters’ behavior towards upgraded bus services in Greater Beirut: Implications for greenhouse gas emissions, social welfare and transport policy," Transportation Research Part A: Policy and Practice, Elsevier, vol. 88(C), pages 265-285.
    9. de Grange, Louis & González, Felipe & Muñoz, Juan Carlos & Troncoso, Rodrigo, 2013. "Aggregate estimation of the price elasticity of demand for public transport in integrated fare systems: The case of Transantiago," Transport Policy, Elsevier, vol. 29(C), pages 178-185.
    10. Paulley, Neil & Balcombe, Richard & Mackett, Roger & Titheridge, Helena & Preston, John & Wardman, Mark & Shires, Jeremy & White, Peter, 2006. "The demand for public transport: The effects of fares, quality of service, income and car ownership," Transport Policy, Elsevier, vol. 13(4), pages 295-306, July.
    11. Chowdhury, Subeh & Ceder, Avishai (Avi), 2016. "Users’ willingness to ride an integrated public-transport service: A literature review," Transport Policy, Elsevier, vol. 48(C), pages 183-195.
    12. Leiva, Carola & Muñoz, Juan Carlos & Giesen, Ricardo & Larrain, Homero, 2010. "Design of limited-stop services for an urban bus corridor with capacity constraints," Transportation Research Part B: Methodological, Elsevier, vol. 44(10), pages 1186-1201, December.
    13. Páez, Antonio & Trépanier, Martin & Morency, Catherine, 2011. "Geodemographic analysis and the identification of potential business partnerships enabled by transit smart cards," Transportation Research Part A: Policy and Practice, Elsevier, vol. 45(7), pages 640-652, August.
    14. Mulley, Corinne & Nelson, John D., 2009. "Flexible transport services: A new market opportunity for public transport," Research in Transportation Economics, Elsevier, vol. 25(1), pages 39-45.
    15. Holmgren, Johan, 2014. "A strategy for increased public transport usage – The effects of implementing a welfare maximizing policy," Research in Transportation Economics, Elsevier, vol. 48(C), pages 221-226.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Filip Covic & Stefan Voß, 2019. "Interoperable smart card data management in public mass transit," Public Transport, Springer, vol. 11(3), pages 523-548, October.
    2. Prasanta K. Sahu & Babak Mehran & Surya P. Mahapatra & Satish Sharma, 2021. "Spatial data analysis approach for network-wide consolidation of bus stop locations," Public Transport, Springer, vol. 13(2), pages 375-394, June.
    3. Andrzej Czerepicki & Tomasz Krukowicz & Anna Górka & Jarosław Szustek, 2021. "Traffic Light Priority for Trams in Warsaw as a Tool for Transport Policy and Reduction of Energy Consumption," Sustainability, MDPI, vol. 13(8), pages 1-22, April.
    4. Li He & Martin Trépanier & Bruno Agard, 2021. "Space–time classification of public transit smart card users’ activity locations from smart card data," Public Transport, Springer, vol. 13(3), pages 579-595, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hörcher, Daniel & Tirachini, Alejandro, 2021. "A review of public transport economics," Economics of Transportation, Elsevier, vol. 25(C).
    2. Liu, Yan & Wang, Siqin & Xie, Bin, 2019. "Evaluating the effects of public transport fare policy change together with built and non-built environment features on ridership: The case in South East Queensland, Australia," Transport Policy, Elsevier, vol. 76(C), pages 78-89.
    3. Wang, David Z.W. & Nayan, Ashish & Szeto, W.Y., 2018. "Optimal bus service design with limited stop services in a travel corridor," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 111(C), pages 70-86.
    4. Suman, Hemant & Larrain, Homero & Muñoz, Juan Carlos, 2021. "The impact of using a naïve approach in the limited-stop bus service design problem," Transportation Research Part A: Policy and Practice, Elsevier, vol. 149(C), pages 45-61.
    5. Urbanek, Anna, 2021. "Potential of modal shift from private cars to public transport: A survey on the commuters’ attitudes and willingness to switch – A case study of Silesia Province, Poland," Research in Transportation Economics, Elsevier, vol. 85(C).
    6. Zi-jia Wang & Feng Chen & Bo Wang & Jian-ling Huang, 2018. "Passengers’ response to transit fare change: an ex post appraisal using smart card data," Transportation, Springer, vol. 45(5), pages 1559-1578, September.
    7. Chen, Jingxu & Liu, Zhiyuan & Zhu, Senlai & Wang, Wei, 2015. "Design of limited-stop bus service with capacity constraint and stochastic travel time," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 83(C), pages 1-15.
    8. Ibarra-Rojas, O.J. & Delgado, F. & Giesen, R. & Muñoz, J.C., 2015. "Planning, operation, and control of bus transport systems: A literature review," Transportation Research Part B: Methodological, Elsevier, vol. 77(C), pages 38-75.
    9. Luis A. Guzman & Santiago Gomez & Carlos Alberto Moncada, 2020. "Short run fare elasticities for Bogotá’s BRT system: ridership responses to fare increases," Transportation, Springer, vol. 47(5), pages 2581-2599, October.
    10. Borhan, Muhamad Nazri & Ibrahim, Ahmad Nazrul Hakimi & Miskeen, Manssour A. Abdulasalm, 2019. "Extending the theory of planned behaviour to predict the intention to take the new high-speed rail for intercity travel in Libya: Assessment of the influence of novelty seeking, trust and external inf," Transportation Research Part A: Policy and Practice, Elsevier, vol. 130(C), pages 373-384.
    11. Thommen, Christoph & Hintermann, Beat, 2023. "Price versus Commitment: Managing the demand for off-peak train tickets in a field experiment," Transportation Research Part A: Policy and Practice, Elsevier, vol. 174(C).
    12. Redman, Lauren & Friman, Margareta & Gärling, Tommy & Hartig, Terry, 2013. "Quality attributes of public transport that attract car users: A research review," Transport Policy, Elsevier, vol. 25(C), pages 119-127.
    13. Yi Fan & Ho Pin Teo & Wayne X. Wan, 2021. "Public transport, noise complaints, and housing: Evidence from sentiment analysis in Singapore," Journal of Regional Science, Wiley Blackwell, vol. 61(3), pages 570-596, June.
    14. Magalhães, David José Ahouagi Vaz de & Rivera-Gonzalez, Carlos, 2021. "Car users’ attitudes towards an enhanced bus system to mitigate urban congestion in a developing country," Transport Policy, Elsevier, vol. 110(C), pages 452-464.
    15. Jiechao Zhang & Xuedong Yan & Meiwu An & Li Sun, 2017. "The Impact of Beijing Subway’s New Fare Policy on Riders’ Attitude, Travel Pattern and Demand," Sustainability, MDPI, vol. 9(5), pages 1-21, April.
    16. Cats, Oded, 2014. "Regularity-driven bus operation: Principles, implementation and business models," Transport Policy, Elsevier, vol. 36(C), pages 223-230.
    17. Konečný Vladimír & Brídziková Mária, 2020. "The Impact of the State of Emergency on the Supply of Services and Passenger Demand for Public Transport," LOGI – Scientific Journal on Transport and Logistics, Sciendo, vol. 11(2), pages 56-67, November.
    18. Larrain, Homero & Muñoz, Juan Carlos & Giesen, Ricardo, 2015. "Generation and design heuristics for zonal express services," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 79(C), pages 201-212.
    19. Wenshuang, Yu & Lindsay M., Tedds & Gillian, Petit, 2022. "Assessing Trends and Patterns of the Effect of COVID-19 on Public Transit Revenues in the City of Calgary," MPRA Paper 115350, University Library of Munich, Germany.
    20. Wong, Yale Z. & Hensher, David A. & Mulley, Corinne, 2020. "Mobility as a service (MaaS): Charting a future context," Transportation Research Part A: Policy and Practice, Elsevier, vol. 131(C), pages 5-19.

    More about this item

    Keywords

    Public transport; Smart card data; Cox hazard model; Number of OD passengers;
    All these keywords.

    JEL classification:

    • R4 - Urban, Rural, Regional, Real Estate, and Transportation Economics - - Transportation Economics

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:pubtra:v:10:y:2018:i:2:d:10.1007_s12469-018-0185-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.