IDEAS home Printed from https://ideas.repec.org/a/spr/psycho/v88y2023i1d10.1007_s11336-022-09866-6.html
   My bibliography  Save this article

An Extended GFfit Statistic Defined on Orthogonal Components of Pearson’s Chi-Square

Author

Listed:
  • Mark Reiser

    (Arizona State University)

  • Silvia Cagnone

    (University of Bologna)

  • Junfei Zhu

    (Arizona State University)

Abstract

The Pearson and likelihood ratio statistics are commonly used to test goodness of fit for models applied to data from a multinomial distribution. The goodness-of-fit test based on Pearson’s Chi-squared statistic is sometimes considered to be a global test that gives little guidance to the source of poor fit when the null hypothesis is rejected, and it has also been recognized that the global test can often be outperformed in terms of power by focused or directional tests. For the cross-classification of a large number of manifest variables, the GFfit statistic focused on second-order marginals for variable pairs i, j has been proposed as a diagnostic to aid in finding the source of lack of fit after the model has been rejected based on a more global test. When data are from a table formed by the cross-classification of a large number of variables, the common global statistics may also have low power and inaccurate Type I error level due to sparseness in the cells of the table. The sparseness problem is rarely encountered with the GFfit statistic because it is focused on the lower-order marginals. In this paper, a new and extended version of the GFfit statistic is proposed by decomposing the Pearson statistic from the full table into orthogonal components defined on marginal distributions and then defining the new version, $$GFfit_{\perp }^{(ij)}$$ G F f i t ⊥ ( i j ) , as a partial sum of these orthogonal components. While the emphasis is on lower-order marginals, the new version of $$GFfit_{\perp }^{(ij)}$$ G F f i t ⊥ ( i j ) is also extended to higher-order tables so that the $$GFfit_{\perp }$$ G F f i t ⊥ statistics sum to the Pearson statistic. As orthogonal components of the Pearson $$X^2$$ X 2 statistic, $$GFfit_{\perp }^{(ij)}$$ G F f i t ⊥ ( i j ) statistics have advantages over other lack-of-fit diagnostics that are currently available for cross-classified tables: the $$GFfit_{\perp }^{(ij)}$$ G F f i t ⊥ ( i j ) generally have higher power to detect lack of fit while maintaining good Type I error control even if the joint frequencies are very sparse, as will be shown in simulation results; theoretical results will establish that $$GFfit_{\perp }^{(ij)}$$ G F f i t ⊥ ( i j ) statistics have known degrees of freedom and are asymptotically independent with known joint distribution, a property which facilitates less conservative control of false discovery rate (FDR) or familywise error rate (FWER) in a high-dimensional table which would produce a large number of bivariate lack-of-fit diagnostics. Computation of $$GFfit_{\perp }^{(ij)}$$ G F f i t ⊥ ( i j ) statistics is also computationally stable. The extended $$GFfit_{\perp }^{(ij)}$$ G F f i t ⊥ ( i j ) statistic can be applied to a variety of models for cross-classified tables. An application of the new GFfit statistic as a diagnostic for a latent variable model is presented.

Suggested Citation

  • Mark Reiser & Silvia Cagnone & Junfei Zhu, 2023. "An Extended GFfit Statistic Defined on Orthogonal Components of Pearson’s Chi-Square," Psychometrika, Springer;The Psychometric Society, vol. 88(1), pages 208-240, March.
  • Handle: RePEc:spr:psycho:v:88:y:2023:i:1:d:10.1007_s11336-022-09866-6
    DOI: 10.1007/s11336-022-09866-6
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11336-022-09866-6
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11336-022-09866-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Houseman E.A. & Ryan L.M. & Coull B.A., 2004. "Cholesky Residuals for Assessing Normal Errors in a Linear Model With Correlated Outcomes," Journal of the American Statistical Association, American Statistical Association, vol. 99, pages 383-394, January.
    2. Maydeu-Olivares, Albert & Joe, Harry, 2005. "Limited- and Full-Information Estimation and Goodness-of-Fit Testing in 2n Contingency Tables: A Unified Framework," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 1009-1020, September.
    3. Albert Maydeu-Olivares & Harry Joe, 2006. "Limited Information Goodness-of-fit Testing in Multidimensional Contingency Tables," Psychometrika, Springer;The Psychometric Society, vol. 71(4), pages 713-732, December.
    4. R. Darrell Bock, 1972. "Estimating item parameters and latent ability when responses are scored in two or more nominal categories," Psychometrika, Springer;The Psychometric Society, vol. 37(1), pages 29-51, March.
    5. Mark Reiser, 1996. "Analysis of residuals for the multionmial item response model," Psychometrika, Springer;The Psychometric Society, vol. 61(3), pages 509-528, September.
    6. E. Andres Houseman & Louise Ryan & Brent Coull, 2004. "Cholesky Residuals for Assessing Normal Errors in a Linear Model with Correlated Outcomes: Technical Report," Harvard University Biostatistics Working Paper Series 1019, Berkeley Electronic Press.
    7. Silvia cagnone & Stefania Mignani, 2007. "Assessing the goodness of fit of a latent variable model for ordinal data," Metron - International Journal of Statistics, Dipartimento di Statistica, Probabilità e Statistiche Applicate - University of Rome, vol. 0(3), pages 337-361.
    8. Alberto Maydeu-Olivares & Rosa Montaño, 2013. "How Should We Assess the Fit of Rasch-Type Models? Approximating the Power of Goodness-of-Fit Statistics in Categorical Data Analysis," Psychometrika, Springer;The Psychometric Society, vol. 78(1), pages 116-133, January.
    9. Cees Glas, 1999. "Modification indices for the 2-PL and the nominal response model," Psychometrika, Springer;The Psychometric Society, vol. 64(3), pages 273-294, September.
    10. Agresti, Alan & Yang, Ming-Chung, 1987. "An empirical investigation of some effects of sparseness in contingency tables," Computational Statistics & Data Analysis, Elsevier, vol. 5(1), pages 9-21.
    11. Jacqmin-Gadda, Helene & Sibillot, Solenne & Proust, Cecile & Molina, Jean-Michel & Thiebaut, Rodolphe, 2007. "Robustness of the linear mixed model to misspecified error distribution," Computational Statistics & Data Analysis, Elsevier, vol. 51(10), pages 5142-5154, June.
    12. Cees Glas, 1988. "The derivation of some tests for the rasch model from the multinomial distribution," Psychometrika, Springer;The Psychometric Society, vol. 53(4), pages 525-546, December.
    13. Anders Christoffersson, 1975. "Factor analysis of dichotomized variables," Psychometrika, Springer;The Psychometric Society, vol. 40(1), pages 5-32, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alberto Maydeu-Olivares & Rosa Montaño, 2013. "How Should We Assess the Fit of Rasch-Type Models? Approximating the Power of Goodness-of-Fit Statistics in Categorical Data Analysis," Psychometrika, Springer;The Psychometric Society, vol. 78(1), pages 116-133, January.
    2. Albert Maydeu-Olivares & Harry Joe, 2006. "Limited Information Goodness-of-fit Testing in Multidimensional Contingency Tables," Psychometrika, Springer;The Psychometric Society, vol. 71(4), pages 713-732, December.
    3. Yang Liu & Ji Seung Yang & Alberto Maydeu-Olivares, 2019. "Restricted Recalibration of Item Response Theory Models," Psychometrika, Springer;The Psychometric Society, vol. 84(2), pages 529-553, June.
    4. Vassilis Vasdekis & Silvia Cagnone & Irini Moustaki, 2012. "A Composite Likelihood Inference in Latent Variable Models for Ordinal Longitudinal Responses," Psychometrika, Springer;The Psychometric Society, vol. 77(3), pages 425-441, July.
    5. Wu, Jianmin & Bentler, Peter M., 2013. "Limited information estimation in binary factor analysis: A review and extension," Computational Statistics & Data Analysis, Elsevier, vol. 57(1), pages 392-403.
    6. Salim Moussa, 2016. "A two-step item response theory procedure for a better measurement of marketing constructs," Journal of Marketing Analytics, Palgrave Macmillan, vol. 4(1), pages 28-50, March.
    7. Jules Ellis, 2014. "An Inequality for Correlations in Unidimensional Monotone Latent Variable Models for Binary Variables," Psychometrika, Springer;The Psychometric Society, vol. 79(2), pages 303-316, April.
    8. Nuo Xi & Michael W. Browne, 2014. "Contributions to the Underlying Bivariate Normal Method for Factor Analyzing Ordinal Data," Journal of Educational and Behavioral Statistics, , vol. 39(6), pages 583-611, December.
    9. Ahmed Bani-Mustafa & K. M. Matawie & C. F. Finch & Amjad Al-Nasser & Enrico Ciavolino, 2019. "Recursive residuals for linear mixed models," Quality & Quantity: International Journal of Methodology, Springer, vol. 53(3), pages 1263-1274, May.
    10. Silvia cagnone & Stefania Mignani, 2007. "Assessing the goodness of fit of a latent variable model for ordinal data," Metron - International Journal of Statistics, Dipartimento di Statistica, Probabilità e Statistiche Applicate - University of Rome, vol. 0(3), pages 337-361.
    11. Cees Glas, 1999. "Modification indices for the 2-PL and the nominal response model," Psychometrika, Springer;The Psychometric Society, vol. 64(3), pages 273-294, September.
    12. A. Béguin & C. Glas, 2001. "MCMC estimation and some model-fit analysis of multidimensional IRT models," Psychometrika, Springer;The Psychometric Society, vol. 66(4), pages 541-561, December.
    13. Chen, Yunxiao & Moustaki, Irini & Zhang, H, 2020. "A note on likelihood ratio tests for models with latent variables," LSE Research Online Documents on Economics 107490, London School of Economics and Political Science, LSE Library.
    14. C. Glas & Anna Dagohoy, 2007. "A Person Fit Test For Irt Models For Polytomous Items," Psychometrika, Springer;The Psychometric Society, vol. 72(2), pages 159-180, June.
    15. Shaobo Jin & Fan Yang-Wallentin, 2017. "Asymptotic Robustness Study of the Polychoric Correlation Estimation," Psychometrika, Springer;The Psychometric Society, vol. 82(1), pages 67-85, March.
    16. Laine Bradshaw & Jonathan Templin, 2014. "Combining Item Response Theory and Diagnostic Classification Models: A Psychometric Model for Scaling Ability and Diagnosing Misconceptions," Psychometrika, Springer;The Psychometric Society, vol. 79(3), pages 403-425, July.
    17. Ick Hoon Jin & Minjeong Jeon, 2019. "A Doubly Latent Space Joint Model for Local Item and Person Dependence in the Analysis of Item Response Data," Psychometrika, Springer;The Psychometric Society, vol. 84(1), pages 236-260, March.
    18. Li Cai, 2010. "A Two-Tier Full-Information Item Factor Analysis Model with Applications," Psychometrika, Springer;The Psychometric Society, vol. 75(4), pages 581-612, December.
    19. Jochen Ranger & Kay Brauer, 2022. "On the Generalized S − X 2 –Test of Item Fit: Some Variants, Residuals, and a Graphical Visualization," Journal of Educational and Behavioral Statistics, , vol. 47(2), pages 202-230, April.
    20. Kim, Sung-Ho & Choi, Hyemi & Lee, Sangjin, 2009. "Estimate-based goodness-of-fit test for large sparse multinomial distributions," Computational Statistics & Data Analysis, Elsevier, vol. 53(4), pages 1122-1131, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:psycho:v:88:y:2023:i:1:d:10.1007_s11336-022-09866-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.