IDEAS home Printed from https://ideas.repec.org/a/sae/jedbes/v47y2022i2p202-230.html
   My bibliography  Save this article

On the Generalized S − X 2 –Test of Item Fit: Some Variants, Residuals, and a Graphical Visualization

Author

Listed:
  • Jochen Ranger
  • Kay Brauer

    (Martin-Luther-University Halle-Wittenberg)

Abstract

The generalized S − X 2 –test is a test of item fit for items with polytomous responses format. The test is based on a comparison of the observed and expected number of responses in strata defined by the test score. In this article, we make four contributions. We demonstrate that the performance of the generalized S − X 2 –test depends on how sparse cells are pooled. We propose alternative implementations of the test within the framework of limited information testing. We derive the distribution of the S − X 2 –residuals that can be used for post hoc analyses. We suggest a diagnostic plot that visualizes the form of the misfit. The performance of the alternative implementations is investigated in a simulation study. The simulation study suggests that the alternative implementations are capable of controlling the Type-I error rate well and have high power. An empirical application concludes this article.

Suggested Citation

  • Jochen Ranger & Kay Brauer, 2022. "On the Generalized S − X 2 –Test of Item Fit: Some Variants, Residuals, and a Graphical Visualization," Journal of Educational and Behavioral Statistics, , vol. 47(2), pages 202-230, April.
  • Handle: RePEc:sae:jedbes:v:47:y:2022:i:2:p:202-230
    DOI: 10.3102/10769986211050304
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.3102/10769986211050304
    Download Restriction: no

    File URL: https://libkey.io/10.3102/10769986211050304?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Dungang Liu & Heping Zhang, 2018. "Residuals and Diagnostics for Ordinal Regression Models: A Surrogate Approach," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 113(522), pages 845-854, April.
    2. Shelby J. Haberman & Sandip Sinharay, 2013. "Generalized Residuals for General Models for Contingency Tables With Application to Item Response Theory," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 108(504), pages 1435-1444, December.
    3. R. Darrell Bock, 1972. "Estimating item parameters and latent ability when responses are scored in two or more nominal categories," Psychometrika, Springer;The Psychometric Society, vol. 37(1), pages 29-51, March.
    4. White, Halbert, 1982. "Maximum Likelihood Estimation of Misspecified Models," Econometrica, Econometric Society, vol. 50(1), pages 1-25, January.
    5. Chalmers, R. Philip, 2012. "mirt: A Multidimensional Item Response Theory Package for the R Environment," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 48(i06).
    6. Yoshio Takane & Jan Leeuw, 1987. "On the relationship between item response theory and factor analysis of discretized variables," Psychometrika, Springer;The Psychometric Society, vol. 52(3), pages 393-408, September.
    7. Shelby Haberman & Sandip Sinharay & Kyong Chon, 2013. "Assessing Item Fit for Unidimensional Item Response Theory Models Using Residuals from Estimated Item Response Functions," Psychometrika, Springer;The Psychometric Society, vol. 78(3), pages 417-440, July.
    8. Maydeu-Olivares, Albert & Joe, Harry, 2005. "Limited- and Full-Information Estimation and Goodness-of-Fit Testing in 2n Contingency Tables: A Unified Framework," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 1009-1020, September.
    9. Rizopoulos, Dimitris, 2006. "ltm: An R Package for Latent Variable Modeling and Item Response Analysis," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 17(i05).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Carmen Köhler & Alexander Robitzsch & Johannes Hartig, 2020. "A Bias-Corrected RMSD Item Fit Statistic: An Evaluation and Comparison to Alternatives," Journal of Educational and Behavioral Statistics, , vol. 45(3), pages 251-273, June.
    2. Björn Andersson & Tao Xin, 2021. "Estimation of Latent Regression Item Response Theory Models Using a Second-Order Laplace Approximation," Journal of Educational and Behavioral Statistics, , vol. 46(2), pages 244-265, April.
    3. Daphna Harel & Russell J. Steele, 2018. "An Information Matrix Test for the Collapsing of Categories Under the Partial Credit Model," Journal of Educational and Behavioral Statistics, , vol. 43(6), pages 721-750, December.
    4. Yang Liu & Ji Seung Yang & Alberto Maydeu-Olivares, 2019. "Restricted Recalibration of Item Response Theory Models," Psychometrika, Springer;The Psychometric Society, vol. 84(2), pages 529-553, June.
    5. Yang Yixin & Lü Xin & Ma Jian & Qiao Han, 2014. "A Robust Factor Analysis Model for Dichotomous Data," Journal of Systems Science and Information, De Gruyter, vol. 2(5), pages 437-450, October.
    6. Shaobo Jin & Fan Yang-Wallentin, 2017. "Asymptotic Robustness Study of the Polychoric Correlation Estimation," Psychometrika, Springer;The Psychometric Society, vol. 82(1), pages 67-85, March.
    7. Daniel L. Oberski, 2016. "A Review of Latent Variable Modeling With R," Journal of Educational and Behavioral Statistics, , vol. 41(2), pages 226-233, April.
    8. Cervantes, Víctor H., 2017. "DFIT: An R Package for Raju's Differential Functioning of Items and Tests Framework," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 76(i05).
    9. Laine Bradshaw & Jonathan Templin, 2014. "Combining Item Response Theory and Diagnostic Classification Models: A Psychometric Model for Scaling Ability and Diagnosing Misconceptions," Psychometrika, Springer;The Psychometric Society, vol. 79(3), pages 403-425, July.
    10. Ick Hoon Jin & Minjeong Jeon, 2019. "A Doubly Latent Space Joint Model for Local Item and Person Dependence in the Analysis of Item Response Data," Psychometrika, Springer;The Psychometric Society, vol. 84(1), pages 236-260, March.
    11. Albert Maydeu-Olivares & Harry Joe, 2006. "Limited Information Goodness-of-fit Testing in Multidimensional Contingency Tables," Psychometrika, Springer;The Psychometric Society, vol. 71(4), pages 713-732, December.
    12. Peter W. Rijn & Usama S. Ali, 2018. "A Generalized Speed–Accuracy Response Model for Dichotomous Items," Psychometrika, Springer;The Psychometric Society, vol. 83(1), pages 109-131, March.
    13. Yang Liu & Jan Hannig, 2017. "Generalized Fiducial Inference for Logistic Graded Response Models," Psychometrika, Springer;The Psychometric Society, vol. 82(4), pages 1097-1125, December.
    14. Salim Moussa, 2016. "A two-step item response theory procedure for a better measurement of marketing constructs," Journal of Marketing Analytics, Palgrave Macmillan, vol. 4(1), pages 28-50, March.
    15. Irini Moustaki & Martin Knott, 2000. "Generalized latent trait models," Psychometrika, Springer;The Psychometric Society, vol. 65(3), pages 391-411, September.
    16. Yang Liu & Ji Seung Yang, 2018. "Bootstrap-Calibrated Interval Estimates for Latent Variable Scores in Item Response Theory," Psychometrika, Springer;The Psychometric Society, vol. 83(2), pages 333-354, June.
    17. Yingbin Zhang & Zhaoxi Yang & Yehui Wang, 2022. "The Impact of Extreme Response Style on the Mean Comparison of Two Independent Samples," SAGE Open, , vol. 12(2), pages 21582440221, June.
    18. Maydeu Olivares, Alberto & D'Zurilla, Thomas J. & Morera, Osvaldo, 1996. "Assessing measurement invariance in questionnaires within latent trait models using item response theory," DES - Working Papers. Statistics and Econometrics. WS 10456, Universidad Carlos III de Madrid. Departamento de Estadística.
    19. Dylan Molenaar, 2015. "Heteroscedastic Latent Trait Models for Dichotomous Data," Psychometrika, Springer;The Psychometric Society, vol. 80(3), pages 625-644, September.
    20. Steven P. Reise & Han Du & Emily F. Wong & Anne S. Hubbard & Mark G. Haviland, 2021. "Matching IRT Models to Patient-Reported Outcomes Constructs: The Graded Response and Log-Logistic Models for Scaling Depression," Psychometrika, Springer;The Psychometric Society, vol. 86(3), pages 800-824, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:jedbes:v:47:y:2022:i:2:p:202-230. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.