IDEAS home Printed from https://ideas.repec.org/a/spr/orspec/v41y2019i1d10.1007_s00291-018-0533-3.html
   My bibliography  Save this article

Robust resource-constrained max-NPV project scheduling with stochastic activity duration

Author

Listed:
  • Yangyang Liang

    (Hubei University of Economics)

  • Nanfang Cui

    (Huazhong University of Science and Technology)

  • Tian Wang

    (Zhongnan University of Economics and Law)

  • Erik Demeulemeester

    (Katholieke Universiteit Leuven)

Abstract

This study investigates the robust resource-constrained max-NPV project problem with stochastic activity duration. First, the project net present value (NPV) and the expected penalty cost are proposed to measure quality robustness and solution robustness from the perspective of discounted cash flows, respectively. Then, a composite robust scheduling model is proposed in the presence of activity duration variability and a two-stage algorithm that integrates simulated annealing and tabu search is developed to deal with the problem. Finally, an extensive computational experiment demonstrates the superiority of the combination between quality robustness and solution robustness as well as the effectiveness of the proposed two-stage algorithm for generating project schedules compared with three other algorithms, namely simulated annealing, tabu search, and multi-start iterative improvement method. Computational results indicate that the proactive project schedules with composite robustness not only can effectively protect the payment plan from disruptions through allocating appropriate time buffers, but also can achieve a remarkable performance with respect to the project NPV.

Suggested Citation

  • Yangyang Liang & Nanfang Cui & Tian Wang & Erik Demeulemeester, 2019. "Robust resource-constrained max-NPV project scheduling with stochastic activity duration," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 41(1), pages 219-254, March.
  • Handle: RePEc:spr:orspec:v:41:y:2019:i:1:d:10.1007_s00291-018-0533-3
    DOI: 10.1007/s00291-018-0533-3
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00291-018-0533-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00291-018-0533-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mika, Marek & Waligora, Grzegorz & Weglarz, Jan, 2008. "Tabu search for multi-mode resource-constrained project scheduling with schedule-dependent setup times," European Journal of Operational Research, Elsevier, vol. 187(3), pages 1238-1250, June.
    2. Tukel, Oya I. & Rom, Walter O. & Eksioglu, Sandra Duni, 2006. "An investigation of buffer sizing techniques in critical chain scheduling," European Journal of Operational Research, Elsevier, vol. 172(2), pages 401-416, July.
    3. Herroelen, Willy & Leus, Roel, 2005. "Project scheduling under uncertainty: Survey and research potentials," European Journal of Operational Research, Elsevier, vol. 165(2), pages 289-306, September.
    4. A. H. Russell, 1970. "Cash Flows in Networks," Management Science, INFORMS, vol. 16(5), pages 357-373, January.
    5. Van de Vonder, Stijn & Demeulemeester, Erik & Herroelen, Willy, 2008. "Proactive heuristic procedures for robust project scheduling: An experimental analysis," European Journal of Operational Research, Elsevier, vol. 189(3), pages 723-733, September.
    6. He, Zhengwen & Wang, Nengmin & Jia, Tao & Xu, Yu, 2009. "Simulated annealing and tabu search for multi-mode project payment scheduling," European Journal of Operational Research, Elsevier, vol. 198(3), pages 688-696, November.
    7. Artigues, Christian & Michelon, Philippe & Reusser, Stephane, 2003. "Insertion techniques for static and dynamic resource-constrained project scheduling," European Journal of Operational Research, Elsevier, vol. 149(2), pages 249-267, September.
    8. Wiesemann, Wolfram & Kuhn, Daniel & Rustem, Berç, 2010. "Maximizing the net present value of a project under uncertainty," European Journal of Operational Research, Elsevier, vol. 202(2), pages 356-367, April.
    9. Erik Demeulemeester & Willy Herroelen, 1992. "A Branch-and-Bound Procedure for the Multiple Resource-Constrained Project Scheduling Problem," Management Science, INFORMS, vol. 38(12), pages 1803-1818, December.
    10. Hartmann, Sönke & Briskorn, Dirk, 2008. "A survey of variants and extensions of the resource-constrained project scheduling problem," Working Paper Series 02/2008, Hamburg School of Business Administration (HSBA).
    11. Hanyu Gu & Andreas Schutt & Peter J. Stuckey & Mark G. Wallace & Geoffrey Chu, 2015. "Exact and Heuristic Methods for the Resource-Constrained Net Present Value Problem," International Handbooks on Information Systems, in: Christoph Schwindt & Jürgen Zimmermann (ed.), Handbook on Project Management and Scheduling Vol.1, edition 127, chapter 0, pages 299-318, Springer.
    12. Van de Vonder, Stijn & Demeulemeester, Erik & Herroelen, Willy & Leus, Roel, 2005. "The use of buffers in project management: The trade-off between stability and makespan," International Journal of Production Economics, Elsevier, vol. 97(2), pages 227-240, August.
    13. Xuejun Hu & Nanfang Cui & Erik Demeulemeester, 2015. "Effective expediting to improve project due date and cost performance through buffer management," International Journal of Production Research, Taylor & Francis Journals, vol. 53(5), pages 1460-1471, March.
    14. Lambrechts, Olivier & Demeulemeester, Erik & Herroelen, Willy, 2008. "A tabu search procedure for developing robust predictive project schedules," International Journal of Production Economics, Elsevier, vol. 111(2), pages 493-508, February.
    15. Bouleimen, K. & Lecocq, H., 2003. "A new efficient simulated annealing algorithm for the resource-constrained project scheduling problem and its multiple mode version," European Journal of Operational Research, Elsevier, vol. 149(2), pages 268-281, September.
    16. Mika, Marek & Waligora, Grzegorz & Weglarz, Jan, 2005. "Simulated annealing and tabu search for multi-mode resource-constrained project scheduling with positive discounted cash flows and different payment models," European Journal of Operational Research, Elsevier, vol. 164(3), pages 639-668, August.
    17. Neumann, K. & Schwindt, C. & Zimmermann, J., 2003. "Order-based neighborhoods for project scheduling with nonregular objective functions," European Journal of Operational Research, Elsevier, vol. 149(2), pages 325-343, September.
    18. Wang, Juite, 2005. "Constraint-based schedule repair for product development projects with time-limited constraints," International Journal of Production Economics, Elsevier, vol. 95(3), pages 399-414, March.
    19. He, Zhengwen & Liu, Renjing & Jia, Tao, 2012. "Metaheuristics for multi-mode capital-constrained project payment scheduling," European Journal of Operational Research, Elsevier, vol. 223(3), pages 605-613.
    20. Sobel, Matthew J. & Szmerekovsky, Joseph G. & Tilson, Vera, 2009. "Scheduling projects with stochastic activity duration to maximize expected net present value," European Journal of Operational Research, Elsevier, vol. 198(3), pages 697-705, November.
    21. Herroelen, Willy S. & Van Dommelen, Patrick & Demeulemeester, Erik L., 1997. "Project network models with discounted cash flows a guided tour through recent developments," European Journal of Operational Research, Elsevier, vol. 100(1), pages 97-121, July.
    22. Elmaghraby, Salah E., 2005. "On the fallacy of averages in project risk management," European Journal of Operational Research, Elsevier, vol. 165(2), pages 307-313, September.
    23. Demeulemeester, Erik & Herroelen, Willy, 2011. "Robust Project Scheduling," Foundations and Trends(R) in Technology, Information and Operations Management, now publishers, vol. 3(3–4), pages 201-376, January.
    24. Arnold H. Buss & Meir J. Rosenblatt, 1997. "Activity Delay in Stochastic Project Networks," Operations Research, INFORMS, vol. 45(1), pages 126-139, February.
    25. Artigues, Christian & Roubellat, Francois, 2000. "A polynomial activity insertion algorithm in a multi-resource schedule with cumulative constraints and multiple modes," European Journal of Operational Research, Elsevier, vol. 127(2), pages 297-316, December.
    26. Herroelen, Willy & Leus, Roel, 2004. "The construction of stable project baseline schedules," European Journal of Operational Research, Elsevier, vol. 156(3), pages 550-565, August.
    27. G Zhu & J F Bard & G Yu, 2005. "Disruption management for resource-constrained project scheduling," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 56(4), pages 365-381, April.
    28. S. Creemers & R. Leus & M. Lambrecht, 2010. "Scheduling Markovian PERT networks to maximize the net present value," Post-Print hal-00800198, HAL.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Peymankar, Mahboobeh & Davari, Morteza & Ranjbar, Mohammad, 2021. "Maximizing the expected net present value in a project with uncertain cash flows," European Journal of Operational Research, Elsevier, vol. 294(2), pages 442-452.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hazır, Öncü & Ulusoy, Gündüz, 2020. "A classification and review of approaches and methods for modeling uncertainty in projects," International Journal of Production Economics, Elsevier, vol. 223(C).
    2. Öncü Hazir & Gündüz Ulusoy, 2020. "A classification and review of approaches and methods for modeling uncertainty in projects," Post-Print hal-02898162, HAL.
    3. Weglarz, Jan & Józefowska, Joanna & Mika, Marek & Waligóra, Grzegorz, 2011. "Project scheduling with finite or infinite number of activity processing modes - A survey," European Journal of Operational Research, Elsevier, vol. 208(3), pages 177-205, February.
    4. Etgar, Ran & Gelbard, Roy & Cohen, Yuval, 2017. "Optimizing version release dates of research and development long-term processes," European Journal of Operational Research, Elsevier, vol. 259(2), pages 642-653.
    5. Morteza Davari & Erik Demeulemeester, 2019. "The proactive and reactive resource-constrained project scheduling problem," Journal of Scheduling, Springer, vol. 22(2), pages 211-237, April.
    6. He, Zhengwen & Liu, Renjing & Jia, Tao, 2012. "Metaheuristics for multi-mode capital-constrained project payment scheduling," European Journal of Operational Research, Elsevier, vol. 223(3), pages 605-613.
    7. He, Zhengwen & Wang, Nengmin & Jia, Tao & Xu, Yu, 2009. "Simulated annealing and tabu search for multi-mode project payment scheduling," European Journal of Operational Research, Elsevier, vol. 198(3), pages 688-696, November.
    8. Creemers, Stefan, 2018. "Maximizing the expected net present value of a project with phase-type distributed activity durations: An efficient globally optimal solution procedure," European Journal of Operational Research, Elsevier, vol. 267(1), pages 16-22.
    9. Wendi Tian & Erik Demeulemeester, 2014. "Railway scheduling reduces the expected project makespan over roadrunner scheduling in a multi-mode project scheduling environment," Annals of Operations Research, Springer, vol. 213(1), pages 271-291, February.
    10. Hartmann, Sönke & Briskorn, Dirk, 2010. "A survey of variants and extensions of the resource-constrained project scheduling problem," European Journal of Operational Research, Elsevier, vol. 207(1), pages 1-14, November.
    11. Zhang, Jingwen & Elmaghraby, Salah E., 2014. "The relevance of the “alphorn of uncertainty” to the financial management of projects under uncertainty," European Journal of Operational Research, Elsevier, vol. 238(1), pages 65-76.
    12. Hartmann, Sönke & Briskorn, Dirk, 2008. "A survey of variants and extensions of the resource-constrained project scheduling problem," Working Paper Series 02/2008, Hamburg School of Business Administration (HSBA).
    13. He, Yukang & Jia, Tao & Zheng, Weibo, 2023. "Tabu search for dedicated resource-constrained multiproject scheduling to minimise the maximal cash flow gap under uncertainty," European Journal of Operational Research, Elsevier, vol. 310(1), pages 34-52.
    14. Zhengwen He & Nengmin Wang & Pengxiang Li, 2014. "Simulated annealing for financing cost distribution based project payment scheduling from a joint perspective," Annals of Operations Research, Springer, vol. 213(1), pages 203-220, February.
    15. Bruni, M.E. & Di Puglia Pugliese, L. & Beraldi, P. & Guerriero, F., 2017. "An adjustable robust optimization model for the resource-constrained project scheduling problem with uncertain activity durations," Omega, Elsevier, vol. 71(C), pages 66-84.
    16. Sobel, Matthew J. & Szmerekovsky, Joseph G. & Tilson, Vera, 2009. "Scheduling projects with stochastic activity duration to maximize expected net present value," European Journal of Operational Research, Elsevier, vol. 198(3), pages 697-705, November.
    17. Deblaere, Filip & Demeulemeester, Erik & Herroelen, Willy, 2011. "Proactive policies for the stochastic resource-constrained project scheduling problem," European Journal of Operational Research, Elsevier, vol. 214(2), pages 308-316, October.
    18. Wenhui Zhao & Nicholas G. Hall & Zhixin Liu, 2020. "Project Evaluation and Selection with Task Failures," Production and Operations Management, Production and Operations Management Society, vol. 29(2), pages 428-446, February.
    19. Hongbo Li & Erik Demeulemeester, 2016. "A genetic algorithm for the robust resource leveling problem," Journal of Scheduling, Springer, vol. 19(1), pages 43-60, February.
    20. HazIr, Öncü & Haouari, Mohamed & Erel, Erdal, 2010. "Robust scheduling and robustness measures for the discrete time/cost trade-off problem," European Journal of Operational Research, Elsevier, vol. 207(2), pages 633-643, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:orspec:v:41:y:2019:i:1:d:10.1007_s00291-018-0533-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.