IDEAS home Printed from https://ideas.repec.org/a/spr/operea/v20y2020i3d10.1007_s12351-018-0376-3.html
   My bibliography  Save this article

Emergency logistics planning under supply risk and demand uncertainty

Author

Listed:
  • Abdul Sattar Safaei

    (Babol Noshirvani University of Technology)

  • Saba Farsad

    (Babol Noshirvani University of Technology)

  • Mohammad Mahdi Paydar

    (Babol Noshirvani University of Technology)

Abstract

One of the most important issues in the crisis management is to supply and deliver the correct type and quantity of relief items in a dynamic environment of crisis situations. Current research presented a novel bi-objective bi-level optimization model in order to design an integrated framework for relief logistics operations. The Upper level objectives are to minimize total operational cost and total unsatisfied demand considering the effect of distribution locations of relief supplies. The lower level in the hierarchical decision process, proposes suppliers with lower supply risk. The proposed nonlinear model is reformulated as a single-level linear problem, and for the upper-level decision, the goal programming (GP) approach is employed for the exact solution of the model to minimize deviations from the goals of the bi-objective problem. Finally, a case study of emergency planning for earthquake disaster verifies the performance of the presented model.

Suggested Citation

  • Abdul Sattar Safaei & Saba Farsad & Mohammad Mahdi Paydar, 2020. "Emergency logistics planning under supply risk and demand uncertainty," Operational Research, Springer, vol. 20(3), pages 1437-1460, September.
  • Handle: RePEc:spr:operea:v:20:y:2020:i:3:d:10.1007_s12351-018-0376-3
    DOI: 10.1007/s12351-018-0376-3
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s12351-018-0376-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s12351-018-0376-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. A. Charnes & W. W. Cooper & R. O. Ferguson, 1955. "Optimal Estimation of Executive Compensation by Linear Programming," Management Science, INFORMS, vol. 1(2), pages 138-151, January.
    2. Keyvanshokooh, Esmaeil & Ryan, Sarah M. & Kabir, Elnaz, 2016. "Hybrid robust and stochastic optimization for closed-loop supply chain network design using accelerated Benders decomposition," European Journal of Operational Research, Elsevier, vol. 249(1), pages 76-92.
    3. Nooraie, S. Vahid & Mellat Parast, Mahour, 2015. "A multi-objective approach to supply chain risk management: Integrating visibility with supply and demand risk," International Journal of Production Economics, Elsevier, vol. 161(C), pages 192-200.
    4. Altay, Nezih & Green III, Walter G., 2006. "OR/MS research in disaster operations management," European Journal of Operational Research, Elsevier, vol. 175(1), pages 475-493, November.
    5. Jonathan F. Bard, 1984. "Optimality conditions for the bilevel programming problem," Naval Research Logistics Quarterly, John Wiley & Sons, vol. 31(1), pages 13-26, March.
    6. Yu, Min-Chun & Goh, Mark, 2014. "A multi-objective approach to supply chain visibility and risk," European Journal of Operational Research, Elsevier, vol. 233(1), pages 125-130.
    7. Aouni, Belaid & Kettani, Ossama, 2001. "Goal programming model: A glorious history and a promising future," European Journal of Operational Research, Elsevier, vol. 133(2), pages 225-231, January.
    8. Tzeng, Gwo-Hshiung & Cheng, Hsin-Jung & Huang, Tsung Dow, 2007. "Multi-objective optimal planning for designing relief delivery systems," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 43(6), pages 673-686, November.
    9. Herminia I. Calvete & Carmen Galé, 2010. "A Multiobjective Bilevel Program for Production-Distribution Planning in a Supply Chain," Lecture Notes in Economics and Mathematical Systems, in: Matthias Ehrgott & Boris Naujoks & Theodor J. Stewart & Jyrki Wallenius (ed.), Multiple Criteria Decision Making for Sustainable Energy and Transportation Systems, pages 155-165, Springer.
    10. Ben-Tal, Aharon & Chung, Byung Do & Mandala, Supreet Reddy & Yao, Tao, 2011. "Robust optimization for emergency logistics planning: Risk mitigation in humanitarian relief supply chains," Transportation Research Part B: Methodological, Elsevier, vol. 45(8), pages 1177-1189, September.
    11. Arora, S.R. & Gupta, Ritu, 2009. "Interactive fuzzy goal programming approach for bilevel programming problem," European Journal of Operational Research, Elsevier, vol. 194(2), pages 368-376, April.
    12. Calvete, Herminia I. & Galé, Carmen & Iranzo, José A., 2014. "Planning of a decentralized distribution network using bilevel optimization," Omega, Elsevier, vol. 49(C), pages 30-41.
    13. Gutjahr, Walter J. & Dzubur, Nada, 2016. "Bi-objective bilevel optimization of distribution center locations considering user equilibria," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 85(C), pages 1-22.
    14. Cheng, Chi-Bin, 2011. "Reverse auction with buyer-supplier negotiation using bi-level distributed programming," European Journal of Operational Research, Elsevier, vol. 211(3), pages 601-611, June.
    15. Safar Fazli & Reza Kiani & Mohammadali Vosooghidizaji, 2015. "Crude oil supply chain risk management with DEMATEL–ANP," Post-Print hal-02327343, HAL.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fei, Liguo & Wang, Yanqing, 2022. "Demand prediction of emergency materials using case-based reasoning extended by the Dempster-Shafer theory," Socio-Economic Planning Sciences, Elsevier, vol. 84(C).
    2. Hu, Shaolong & Dong, Zhijie Sasha & Lev, Benjamin, 2022. "Supplier selection in disaster operations management: Review and research gap identification," Socio-Economic Planning Sciences, Elsevier, vol. 82(PB).
    3. Zhongxiu Peng & Cong Wang & Wenqing Xu & Jinsong Zhang, 2022. "Research on Location-Routing Problem of Maritime Emergency Materials Distribution Based on Bi-Level Programming," Mathematics, MDPI, vol. 10(8), pages 1-23, April.
    4. Seyed Babak Ebrahimi & Ehsan Bagheri, 2022. "A multi-objective formulation for the closed-loop plastic supply chain under uncertainty," Operational Research, Springer, vol. 22(5), pages 4725-4768, November.
    5. Sara Rye & Emel Aktas, 2023. "A Rule-Based Predictive Model for Estimating Human Impact Data in Natural Onset Disasters—The Case of a PRED Model," Logistics, MDPI, vol. 7(2), pages 1-24, May.
    6. Wang, Qingyi & Liu, Zhuomeng & Jiang, Peng & Luo, Li, 2022. "A stochastic programming model for emergency supplies pre-positioning, transshipment and procurement in a regional healthcare coalition," Socio-Economic Planning Sciences, Elsevier, vol. 82(PB).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lu, Chung-Cheng & Ying, Kuo-Ching & Chen, Hui-Ju, 2016. "Real-time relief distribution in the aftermath of disasters – A rolling horizon approach," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 93(C), pages 1-20.
    2. Özdamar, Linet & Ertem, Mustafa Alp, 2015. "Models, solutions and enabling technologies in humanitarian logistics," European Journal of Operational Research, Elsevier, vol. 244(1), pages 55-65.
    3. Doan, Xuan Vinh & Shaw, Duncan, 2019. "Resource allocation when planning for simultaneous disasters," European Journal of Operational Research, Elsevier, vol. 274(2), pages 687-709.
    4. Rodolfo Modrigais Strauss Nunes & Susana Carla Farias Pereira, 2022. "Intellectual structure and trends in the humanitarian operations field," Annals of Operations Research, Springer, vol. 319(1), pages 1099-1157, December.
    5. Wilson, Duncan T. & Hawe, Glenn I. & Coates, Graham & Crouch, Roger S., 2013. "A multi-objective combinatorial model of casualty processing in major incident response," European Journal of Operational Research, Elsevier, vol. 230(3), pages 643-655.
    6. Laijun Zhao & Huiyong Li & Yan Sun & Rongbing Huang & Qingmi Hu & Jiajia Wang & Fei Gao, 2017. "Planning Emergency Shelters for Urban Disaster Resilience: An Integrated Location-Allocation Modeling Approach," Sustainability, MDPI, vol. 9(11), pages 1-20, November.
    7. Nishat Alam Choudhary & Shalabh Singh & Tobias Schoenherr & M. Ramkumar, 2023. "Risk assessment in supply chains: a state-of-the-art review of methodologies and their applications," Annals of Operations Research, Springer, vol. 322(2), pages 565-607, March.
    8. Zhang, Guowei & Zhu, Ning & Ma, Shoufeng & Xia, Jun, 2021. "Humanitarian relief network assessment using collaborative truck-and-drone system," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 152(C).
    9. Rennemo, Sigrid Johansen & Rø, Kristina Fougner & Hvattum, Lars Magnus & Tirado, Gregorio, 2014. "A three-stage stochastic facility routing model for disaster response planning," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 62(C), pages 116-135.
    10. Abhishek Behl & Pankaj Dutta, 2019. "Humanitarian supply chain management: a thematic literature review and future directions of research," Annals of Operations Research, Springer, vol. 283(1), pages 1001-1044, December.
    11. M. Ortuño & G. Tirado & B. Vitoriano, 2011. "A lexicographical goal programming based decision support system for logistics of Humanitarian Aid," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 19(2), pages 464-479, December.
    12. Fatemeh Sabouhi & Ali Bozorgi-Amiri & Mohammad Moshref-Javadi & Mehdi Heydari, 2019. "An integrated routing and scheduling model for evacuation and commodity distribution in large-scale disaster relief operations: a case study," Annals of Operations Research, Springer, vol. 283(1), pages 643-677, December.
    13. Zhongzhen Yang & Liquan Guo & Zaili Yang, 2019. "Emergency logistics for wildfire suppression based on forecasted disaster evolution," Annals of Operations Research, Springer, vol. 283(1), pages 917-937, December.
    14. Rodríguez-Espíndola, Oscar & Ahmadi, Hossein & Gastélum-Chavira, Diego & Ahumada-Valenzuela, Omar & Chowdhury, Soumyadeb & Dey, Prasanta Kumar & Albores, Pavel, 2023. "Humanitarian logistics optimization models: An investigation of decision-maker involvement and directions to promote implementation," Socio-Economic Planning Sciences, Elsevier, vol. 89(C).
    15. Ali Ekici & Okan Örsan Özener, 2020. "Inventory routing for the last mile delivery of humanitarian relief supplies," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 42(3), pages 621-660, September.
    16. Amir Jamali & Amirhossein Ranjbar & Jafar Heydari & Sina Nayeri, 2022. "A multi-objective stochastic programming model to configure a sustainable humanitarian logistics considering deprivation cost and patient severity," Annals of Operations Research, Springer, vol. 319(1), pages 1265-1300, December.
    17. Peters, Koen & Fleuren, H.A. & den Hertog, Dick & Kavelj, Mirjana & Silva, Sergio & Goncalves, Rui & Ergun, Ozlem & Soldner, Mallory, 2016. "The Nutritious Supply Chain : Optimizing Humanitarian Food Aid," Discussion Paper 2016-044, Tilburg University, Center for Economic Research.
    18. M Larbani & B Aouni, 2011. "A new approach for generating efficient solutions within the goal programming model," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 62(1), pages 175-182, January.
    19. Caunhye, Aakil M. & Nie, Xiaofeng & Pokharel, Shaligram, 2012. "Optimization models in emergency logistics: A literature review," Socio-Economic Planning Sciences, Elsevier, vol. 46(1), pages 4-13.
    20. Roberto Aringhieri & Sara Bigharaz & Davide Duma & Alberto Guastalla, 2022. "Fairness in ambulance routing for post disaster management," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 30(1), pages 189-211, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:operea:v:20:y:2020:i:3:d:10.1007_s12351-018-0376-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.