IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v89y2017i2d10.1007_s11069-017-2990-4.html
   My bibliography  Save this article

An extended STIRPAT model-based methodology for evaluating the driving forces affecting carbon emissions in existing public building sector: evidence from China in 2000–2015

Author

Listed:
  • Minda Ma

    (Chongqing University)

  • Ran Yan

    (Chongqing University)

  • Weiguang Cai

    (Chongqing University
    Lawrence Berkeley National Laboratory)

Abstract

Productive building energy efficiency work is a non-ignored booster to achieve the sustainable development in China, and evaluating the driving forces of carbon emissions in Chinese public buildings (CECPB) plays a crucial role in China building energy efficiency work. Nevertheless, China building energy efficiency work is currently challenged by the lack of effective approaches to evaluating the driving forces affecting CECPB at a quantitative level. To improve the carbon emission control strategy of Chinese public buildings, this study utilized the Stochastic Impacts by Regression on Population, Affluence, and Technology (STIRPAT) model and ridge regression analysis to evaluate the driving forces affecting CECPB from 2000 to 2015. This study has three main results: (1) All of the five driving forces (i.e., population, urbanization level, floor area per capita of existing Chinese public buildings, GDP index in the Chinese tertiary industry sector, and carbon emission intensity in Chinese public buildings) have positive contributions to CECPB during the period of 2000–2015. (2) The different contributions of the aforementioned driving forces can be expressed by their different β values in decreasing order, as follows: floor area per capita of existing Chinese public buildings (21.12%), population (20.98%), urbanization level (20.81%), carbon emission intensity in Chinese public buildings (20.20%), and GDP index in the Chinese tertiary industry sector (19.44%). (3) The goodness of fit for the final ridge regression analysis proves that the proposed evaluation method is also applicable for evaluating these driving forces at a subitem level. Furthermore, this study demonstrates the feasibility of evaluating the driving forces affecting CECPB using the STIRPAT model and ridge regression analysis and fills the research gap. The discoveries of this study can impel the development of the carbon emission control strategy of Chinese public buildings for the upcoming phase.

Suggested Citation

  • Minda Ma & Ran Yan & Weiguang Cai, 2017. "An extended STIRPAT model-based methodology for evaluating the driving forces affecting carbon emissions in existing public building sector: evidence from China in 2000–2015," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 89(2), pages 741-756, November.
  • Handle: RePEc:spr:nathaz:v:89:y:2017:i:2:d:10.1007_s11069-017-2990-4
    DOI: 10.1007/s11069-017-2990-4
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11069-017-2990-4
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11069-017-2990-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhao, Xiaoli & Li, Na & Ma, Chunbo, 2012. "Residential energy consumption in urban China: A decomposition analysis," Energy Policy, Elsevier, vol. 41(C), pages 644-653.
    2. Theo Dijkstra, 2014. "Ridge regression and its degrees of freedom," Quality & Quantity: International Journal of Methodology, Springer, vol. 48(6), pages 3185-3193, November.
    3. Wang, Shaojian & Liu, Xiaoping, 2017. "China’s city-level energy-related CO2 emissions: Spatiotemporal patterns and driving forces," Applied Energy, Elsevier, vol. 200(C), pages 204-214.
    4. Wang, Qiang & Li, Rongrong, 2016. "Drivers for energy consumption: A comparative analysis of China and India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 954-962.
    5. Zhang, Ming & Guo, Fangyan, 2013. "Analysis of rural residential commercial energy consumption in China," Energy, Elsevier, vol. 52(C), pages 222-229.
    6. Chen, Han & Huang, Ye & Shen, Huizhong & Chen, Yilin & Ru, Muye & Chen, Yuanchen & Lin, Nan & Su, Shu & Zhuo, Shaojie & Zhong, Qirui & Wang, Xilong & Liu, Junfeng & Li, Bengang & Tao, Shu, 2016. "Modeling temporal variations in global residential energy consumption and pollutant emissions," Applied Energy, Elsevier, vol. 184(C), pages 820-829.
    7. Ang, B.W. & Su, Bin, 2016. "Carbon emission intensity in electricity production: A global analysis," Energy Policy, Elsevier, vol. 94(C), pages 56-63.
    8. York, Richard & Rosa, Eugene A. & Dietz, Thomas, 2003. "STIRPAT, IPAT and ImPACT: analytic tools for unpacking the driving forces of environmental impacts," Ecological Economics, Elsevier, vol. 46(3), pages 351-365, October.
    9. Wang, Ping & Wu, Wanshui & Zhu, Bangzhu & Wei, Yiming, 2013. "Examining the impact factors of energy-related CO2 emissions using the STIRPAT model in Guangdong Province, China," Applied Energy, Elsevier, vol. 106(C), pages 65-71.
    10. Zhang, Ming & Song, Yan & Li, Peng & Li, Huanan, 2016. "Study on affecting factors of residential energy consumption in urban and rural Jiangsu," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 330-337.
    11. Sun, Chuanwang & Ouyang, Xiaoling, 2016. "Price and expenditure elasticities of residential energy demand during urbanization: An empirical analysis based on the household-level survey data in China," Energy Policy, Elsevier, vol. 88(C), pages 56-63.
    12. Douak, Fouzi & Melgani, Farid & Benoudjit, Nabil, 2013. "Kernel ridge regression with active learning for wind speed prediction," Applied Energy, Elsevier, vol. 103(C), pages 328-340.
    13. Cai, W.G. & Wu, Y. & Zhong, Y. & Ren, H., 2009. "China building energy consumption: Situation, challenges and corresponding measures," Energy Policy, Elsevier, vol. 37(6), pages 2054-2059, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Claudia García-García & Catalina B. García-García & Román Salmerón, 2021. "Confronting collinearity in environmental regression models: evidence from world data," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 30(3), pages 895-926, September.
    2. Li, Li & Hong, Xuefei & Peng, Ke, 2019. "A spatial panel analysis of carbon emissions, economic growth and high-technology industry in China," Structural Change and Economic Dynamics, Elsevier, vol. 49(C), pages 83-92.
    3. Olatunji Abdul Shobande, 2021. "Decomposing the Persistent and Transitory Effect of Information and Communication Technology on Environmental Impacts Assessment in Africa: Evidence from Mundlak Specification," Sustainability, MDPI, vol. 13(9), pages 1-12, April.
    4. Haiyan Duan & Shipei Zhang & Siying Duan & Weicheng Zhang & Zhiyuan Duan & Shuo Wang & Junnian Song & Xian’en Wang, 2019. "Carbon Emissions Peak Prediction and the Reduction Pathway in Buildings during Operation in Jilin Province Based on LEAP," Sustainability, MDPI, vol. 11(17), pages 1-23, August.
    5. Decai Tang & Yan Zhang & Brandon J. Bethel, 2019. "An Analysis of Disparities and Driving Factors of Carbon Emissions in the Yangtze River Economic Belt," Sustainability, MDPI, vol. 11(8), pages 1-13, April.
    6. Bing Wang & Chao-Qun Cui & Yi-Xin Zhao & Bo Yang & Qing-Zhou Yang, 2019. "Carbon emissions accounting for China’s coal mining sector: invisible sources of climate change," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 99(3), pages 1345-1364, December.
    7. Cai, Wei & Liu, Conghu & Zhang, Cuixia & Ma, Minda & Rao, Weizhen & Li, Wenyi & He, Kang & Gao, Mengdi, 2018. "Developing the ecological compensation criterion of industrial solid waste based on emergy for sustainable development," Energy, Elsevier, vol. 157(C), pages 940-948.
    8. Catalina García García & Román Salmerón Gómez & José García García, 2019. "Comment on “An extended STIRPAT model-based methodology for evaluating the driving forces affecting carbon emissions in existing public building sector: evidence from China in 2000–2015” by Ma et al. ," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 99(1), pages 609-610, October.
    9. Yang, Jingjing & Deng, Zhang & Guo, Siyue & Chen, Yixing, 2023. "Development of bottom-up model to estimate dynamic carbon emission for city-scale buildings," Applied Energy, Elsevier, vol. 331(C).
    10. Song, Yi & Huang, Jianbai & Zhang, Yijun & Wang, Zhiping, 2019. "Drivers of metal consumption in China: An input-output structural decomposition analysis," Resources Policy, Elsevier, vol. 63(C), pages 1-1.
    11. Vélez-Henao, Johan-Andrés & Font Vivanco, David & Hernández-Riveros, Jesús-Antonio, 2019. "Technological change and the rebound effect in the STIRPAT model: A critical view," Energy Policy, Elsevier, vol. 129(C), pages 1372-1381.
    12. Ma, Minda & Cai, Wei & Cai, Weiguang, 2018. "Carbon abatement in China's commercial building sector: A bottom-up measurement model based on Kaya-LMDI methods," Energy, Elsevier, vol. 165(PA), pages 350-368.
    13. Shobande, Olatunji A. & Ogbeifun, Lawrence, 2023. "Pooling cross-sectional and time series data for estimating causality between technological innovation, affluence and carbon dynamics: A comparative evidence from developed and developing countries," Technological Forecasting and Social Change, Elsevier, vol. 187(C).
    14. Feng, Chao & Huang, Jian-Bai & Wang, Miao, 2018. "The driving forces and potential mitigation of energy-related CO2 emissions in China's metal industry," Resources Policy, Elsevier, vol. 59(C), pages 487-494.
    15. Bingfeng Bai & Wei Fan, 2023. "Research on strategic liner ship fleet planning with regard to hub-and-spoke network," Operations Management Research, Springer, vol. 16(1), pages 363-376, March.
    16. Dou, Yue & Zhao, Jun & Dong, Xiucheng & Dong, Kangyin, 2021. "Quantifying the impacts of energy inequality on carbon emissions in China: A household-level analysis," Energy Economics, Elsevier, vol. 102(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Minda Ma & Liyin Shen & Hong Ren & Weiguang Cai & Zhili Ma, 2017. "How to Measure Carbon Emission Reduction in China’s Public Building Sector: Retrospective Decomposition Analysis Based on STIRPAT Model in 2000–2015," Sustainability, MDPI, vol. 9(10), pages 1-16, September.
    2. Ma, Minda & Cai, Wei & Cai, Weiguang, 2018. "Carbon abatement in China's commercial building sector: A bottom-up measurement model based on Kaya-LMDI methods," Energy, Elsevier, vol. 165(PA), pages 350-368.
    3. Yueyue Rong & Junsong Jia & Min Ju & Chundi Chen & Yangming Zhou & Yexi Zhong, 2021. "Multi-Perspective Analysis of Household Carbon Dioxide Emissions from Direct Energy Consumption by the Methods of Logarithmic Mean Divisia Index and σ Convergence in Central China," Sustainability, MDPI, vol. 13(16), pages 1-28, August.
    4. Wang, Miao & Feng, Chao, 2018. "Decomposing the change in energy consumption in China's nonferrous metal industry: An empirical analysis based on the LMDI method," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2652-2663.
    5. Yongxia Ding & Wei Qu & Shuwen Niu & Man Liang & Wenli Qiang & Zhenguo Hong, 2016. "Factors Influencing the Spatial Difference in Household Energy Consumption in China," Sustainability, MDPI, vol. 8(12), pages 1-20, December.
    6. Wang, Shaojian & Wang, Jieyu & Fang, Chuanglin & Feng, Kuishuang, 2019. "Inequalities in carbon intensity in China: A multi-scalar and multi-mechanism analysis," Applied Energy, Elsevier, vol. 254(C).
    7. Feng Dong & Bolin Yu & Yifei Hua & Shuaiqing Zhang & Yue Wang, 2018. "A Comparative Analysis of Residential Energy Consumption in Urban and Rural China: Determinants and Regional Disparities," IJERPH, MDPI, vol. 15(11), pages 1-19, November.
    8. Wang, Shaojian & Zeng, Jingyuan & Liu, Xiaoping, 2019. "Examining the multiple impacts of technological progress on CO2 emissions in China: A panel quantile regression approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 103(C), pages 140-150.
    9. Minda Ma & Ran Yan & Weiguang Cai, 2017. "A STIRPAT model-based methodology for calculating energy savings in China’s existing civil buildings from 2001 to 2015," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 87(3), pages 1765-1781, July.
    10. Hongguang Nie & René Kemp & Véronique Vasseur, 2020. "Exploring the Changing Gap of Residential Energy Consumption per Capita in China and the Netherlands: A Comparative Analysis of Driving Forces," Sustainability, MDPI, vol. 12(11), pages 1-17, June.
    11. Wang, Shaojian & Zeng, Jingyuan & Huang, Yongyuan & Shi, Chenyi & Zhan, Peiyu, 2018. "The effects of urbanization on CO2 emissions in the Pearl River Delta: A comprehensive assessment and panel data analysis," Applied Energy, Elsevier, vol. 228(C), pages 1693-1706.
    12. Zhao, Jincai & Ji, Guangxing & Yue, YanLin & Lai, Zhizhu & Chen, Yulong & Yang, Dongyang & Yang, Xu & Wang, Zheng, 2019. "Spatio-temporal dynamics of urban residential CO2 emissions and their driving forces in China using the integrated two nighttime light datasets," Applied Energy, Elsevier, vol. 235(C), pages 612-624.
    13. Tan, Xianchun & Lai, Haiping & Gu, Baihe & Zeng, Yuan & Li, Hui, 2018. "Carbon emission and abatement potential outlook in China's building sector through 2050," Energy Policy, Elsevier, vol. 118(C), pages 429-439.
    14. Zhang, Chuanguo & Tan, Zheng, 2016. "The relationships between population factors and China's carbon emissions: Does population aging matter?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 1018-1025.
    15. Rong Guo & Xiaochen Wu & Tong Wu & Chao Dai, 2023. "Spatial–Temporal Pattern Characteristics and Impact Factors of Carbon Emissions in Production–Living–Ecological Spaces in Heilongjiang Province, China," Land, MDPI, vol. 12(6), pages 1-19, May.
    16. Ling Xiong & Shaozhou Qi, 2018. "Financial Development And Carbon Emissions In Chinese Provinces: A Spatial Panel Data Analysis," The Singapore Economic Review (SER), World Scientific Publishing Co. Pte. Ltd., vol. 63(02), pages 447-464, March.
    17. Roula Inglesi-Lotz & Luis Diez del Corral Morales, 2017. "The Effect of Education on a Country’s Energy Consumption: Evidence from Developed and Developing Countries," Working Papers 201733, University of Pretoria, Department of Economics.
    18. Ma, Chunbo, 2014. "A multi-fuel, multi-sector and multi-region approach to index decomposition: An application to China's energy consumption 1995–2010," Energy Economics, Elsevier, vol. 42(C), pages 9-16.
    19. Sun, Xiaoqi & Liu, Xiaojia, 2020. "Decomposition analysis of debt’s impact on China’s energy consumption," Energy Policy, Elsevier, vol. 146(C).
    20. Wang, Yuan & Zhang, Xiang & Kubota, Jumpei & Zhu, Xiaodong & Lu, Genfa, 2015. "A semi-parametric panel data analysis on the urbanization-carbon emissions nexus for OECD countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 48(C), pages 704-709.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:89:y:2017:i:2:d:10.1007_s11069-017-2990-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.