IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v111y2022i1d10.1007_s11069-021-05066-0.html
   My bibliography  Save this article

Risk assessment framework for Mediterranean airports: a focus on extreme temperatures and precipitations and sea level rise

Author

Listed:
  • Carmela De Vivo

    (University of Naples “Parthenope”)

  • Marta Ellena

    (Fondazione CMCC-Centro Euro-Mediterraneo Sui Cambiamenti Climatici
    University of Venice “Ca Foscari”)

  • Vincenzo Capozzi

    (University of Naples “Parthenope”)

  • Giorgio Budillon

    (University of Naples “Parthenope”)

  • Paola Mercogliano

    (Fondazione CMCC-Centro Euro-Mediterraneo Sui Cambiamenti Climatici)

Abstract

The increase of frequency and severity of extreme weather events due to climate change gives evidence of severe challenges faced by infrastructure systems. Among them, the aviation sector is particularly at risk from the potential consequences of climate change. Airports are classified as critical infrastructures because they provide fundamental functions to sustain societies and economic activities. More specifically, Mediterranean airports face risks associated with sea level rise, higher occurrence of extreme temperature and precipitation events. These aspects require the implementation of appropriate risk assessments and definition of targeted adaptation strategies, which are still limited in the Mediterranean region. The aim of the present paper is to provide theoretical frameworks in order to assess risks of climate change on Mediterranean airports, related to extreme temperature, extreme precipitation and sea level rise. Starting from a review of the literature, we first identify the sources of climate risk that may induce potential impacts on airports, here divided in air side and land side components. In order to do so, we select a series of indicators used as proxies for identifying hazard, exposure and vulnerability. The application of these theoretical frameworks allows defining the level of risk associated to each hazard, with the goal to support the identification of specific adaptation measures for the Mediterranean airports.

Suggested Citation

  • Carmela De Vivo & Marta Ellena & Vincenzo Capozzi & Giorgio Budillon & Paola Mercogliano, 2022. "Risk assessment framework for Mediterranean airports: a focus on extreme temperatures and precipitations and sea level rise," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 111(1), pages 547-566, March.
  • Handle: RePEc:spr:nathaz:v:111:y:2022:i:1:d:10.1007_s11069-021-05066-0
    DOI: 10.1007/s11069-021-05066-0
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11069-021-05066-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11069-021-05066-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Burbidge, Rachel, 2018. "Adapting aviation to a changing climate: Key priorities for action," Journal of Air Transport Management, Elsevier, vol. 71(C), pages 167-174.
    2. Borsky, Stefan & Unterberger, Christian, 2019. "Bad weather and flight delays: The impact of sudden and slow onset weather events," Economics of Transportation, Elsevier, vol. 18(C), pages 10-26.
    3. Ryley, Tim & Baumeister, Stefan & Coulter, Liese, 2020. "Climate change influences on aviation: A literature review," Transport Policy, Elsevier, vol. 92(C), pages 55-64.
    4. Guy Gratton & Anil Padhra & Spyridon Rapsomanikis & Paul D. Williams, 2020. "The impacts of climate change on Greek airports," Climatic Change, Springer, vol. 160(2), pages 219-231, May.
    5. Sergio Ortega Alba & Mario Manana, 2016. "Energy Research in Airports: A Review," Energies, MDPI, vol. 9(5), pages 1-19, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Stefan Gössling & Christoph Neger & Robert Steiger & Rainer Bell, 2023. "Weather, climate change, and transport: a review," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 118(2), pages 1341-1360, September.
    2. Enrico Mancinelli & Francesco Canestrari & Andrea Graziani & Umberto Rizza & Giorgio Passerini, 2021. "Sustainable Performances of Small to Medium-Sized Airports in the Adriatic Region," Sustainability, MDPI, vol. 13(23), pages 1-20, November.
    3. Liu, Xiaochen & Zhang, Tao & Liu, Xiaohua & Li, Lingshan & Lin, Lin & Jiang, Yi, 2021. "Energy saving potential for space heating in Chinese airport terminals: The impact of air infiltration," Energy, Elsevier, vol. 215(PB).
    4. Mogtit, Abdessamed & Boudjemaa, Redouane & Lagha, Mohand, 2022. "A novel hybrid algorithm based on ga and m-nn for an optimal design of a weather radar network," Journal of Air Transport Management, Elsevier, vol. 102(C).
    5. Chen, Xiaoguang & Chen, Luoye & Xie, Wei & Mueller, Nathaniel D. & Davis, Steven J., 2023. "Flight delays due to air pollution in China," Journal of Environmental Economics and Management, Elsevier, vol. 119(C).
    6. Artur Kierzkowski & Tomasz Kisiel, 2021. "Simulation Model for the Estimation of Energy Consumption of the Baggage Handling System in the Landside Area of the Airport," Energies, MDPI, vol. 15(1), pages 1-11, December.
    7. Sergio Ortega Alba & Mario Manana, 2017. "Characterization and Analysis of Energy Demand Patterns in Airports," Energies, MDPI, vol. 10(1), pages 1-35, January.
    8. Tianni Wang & Mark Ching-Pong Poo & Adolf K. Y. Ng & Zaili Yang, 2023. "Adapting to the Impacts Posed by Climate Change: Applying the Climate Change Risk Indicator (CCRI) Framework in a Multi-Modal Transport System," Sustainability, MDPI, vol. 15(10), pages 1-21, May.
    9. Sun, Xiaoqian & Wandelt, Sebastian & Zhang, Anming, 2022. "STARTUPS: Founding airlines during COVID-19 - A hopeless endeavor or an ample opportunity for a better aviation system?," Transport Policy, Elsevier, vol. 118(C), pages 10-19.
    10. Till Kösters & Marlena Meier & Gernot Sieg, 2023. "Effects of the use-it-or-lose-it rule on airline strategy and climate," Working Papers 36, Institute of Transport Economics, University of Muenster.
    11. Lemetti, Anastasia & Hardell, Henrik & Polishchuk, Tatiana, 2023. "Arrival flight efficiency in pre- and post-Covid-19 pandemics," Journal of Air Transport Management, Elsevier, vol. 107(C).
    12. Abdellah Menou & Risto Lahdelma & Pekka Salminen, 2022. "Multicriteria Decision Aiding for Planning Renewable Power Production at Moroccan Airports," Energies, MDPI, vol. 15(14), pages 1-20, July.
    13. Lu, Yanyu & Dong, Jiankai & Liu, Jing, 2020. "Zonal modelling for thermal and energy performance of large space buildings: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    14. Víctor Fernando Gómez Comendador & Rosa María Arnaldo Valdés & Bernard Lisker, 2019. "A Holistic Approach to the Environmental Certification of Green Airports," Sustainability, MDPI, vol. 11(15), pages 1-38, July.
    15. Andrej Přívara & Magdaléna Přívarová, 2019. "Nexus between Climate Change, Displacement and Conflict: Afghanistan Case," Sustainability, MDPI, vol. 11(20), pages 1-19, October.
    16. Artur Kierzkowski & Tomasz Kisiel & Piotr Uchroński, 2021. "Simulation Model of Airport Security Lanes with Power Consumption Estimation," Energies, MDPI, vol. 14(20), pages 1-11, October.
    17. Klophaus, Richard & Lauth, Gregor Julius, 2022. "Monetary mapping of the climate footprint of air travel to a single airport," Journal of Air Transport Management, Elsevier, vol. 101(C).
    18. Glenn Baxter & Panarat Srisaeng & Graham Wild, 2018. "An Assessment of Airport Sustainability, Part 2—Energy Management at Copenhagen Airport," Resources, MDPI, vol. 7(2), pages 1-27, May.
    19. Li, Zheng & Hensher, David A. & Rose, John M., 2010. "Willingness to pay for travel time reliability in passenger transport: A review and some new empirical evidence," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 46(3), pages 384-403, May.
    20. Jingming Qian & Shujiang Miao & Nigel Tapper & Jianguang Xie & Greg Ingleton, 2020. "Investigation on Airport Landscape Cooling Associated with Irrigation: A Case Study of Adelaide Airport, Australia," Sustainability, MDPI, vol. 12(19), pages 1-16, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:111:y:2022:i:1:d:10.1007_s11069-021-05066-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.