IDEAS home Printed from https://ideas.repec.org/a/eee/jaitra/v101y2022ics0969699722000254.html
   My bibliography  Save this article

Monetary mapping of the climate footprint of air travel to a single airport

Author

Listed:
  • Klophaus, Richard
  • Lauth, Gregor Julius

Abstract

The annual climate costs of an individual airport are calculated accounting for its global rather than local environmental impact. By mapping the climate footprint of air travel to an airport instead of airlines, flights or passengers, the potential climate cost savings can be derived if all scheduled air services at an airport were to be suspended. The approach is used in an empirical case study for a medium-sized airport in Germany. The climate impact of scheduled air travel to and from this airport within a specified year is thus given a price tag that considers greenhouse gases beyond carbon dioxide. It is argued that the airport's climate costs are low compared to its economic benefits.

Suggested Citation

  • Klophaus, Richard & Lauth, Gregor Julius, 2022. "Monetary mapping of the climate footprint of air travel to a single airport," Journal of Air Transport Management, Elsevier, vol. 101(C).
  • Handle: RePEc:eee:jaitra:v:101:y:2022:i:c:s0969699722000254
    DOI: 10.1016/j.jairtraman.2022.102204
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0969699722000254
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jairtraman.2022.102204?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Scheelhaase, Janina & Maertens, Sven & Grimme, Wolfgang & Jung, Martin, 2018. "EU ETS versus CORSIA – A critical assessment of two approaches to limit air transport's CO2 emissions by market-based measures," Journal of Air Transport Management, Elsevier, vol. 67(C), pages 55-62.
    2. Paul Chiambaretto & Elodie Mayenc & Hervé Chappert & Juliane Engsig & Anne-Sophie Fernandez & Frédéric Le Roy, 2021. "Where does flygskam come from? The role of citizens’ lack of knowledge of the environmental impact of air transport in explaining the development of flight shame," Post-Print hal-03514706, HAL.
    3. Adler, Nicole & Ülkü, Tolga & Yazhemsky, Ekaterina, 2013. "Small regional airport sustainability: Lessons from benchmarking," Journal of Air Transport Management, Elsevier, vol. 33(C), pages 22-31.
    4. Chiambaretto, Paul & Mayenc, Elodie & Chappert, Hervé & Engsig, Juliane & Fernandez, Anne-Sophie & Le Roy, Frédéric, 2021. "Where does flygskam come from? The role of citizens’ lack of knowledge of the environmental impact of air transport in explaining the development of flight shame," Journal of Air Transport Management, Elsevier, vol. 93(C).
    5. Vickerman, Roger, 2017. "Beyond cost-benefit analysis: the search for a comprehensive evaluation of transport investment," Research in Transportation Economics, Elsevier, vol. 63(C), pages 5-12.
    6. Loo, Becky P.Y. & Li, Linna & Psaraki, Voula & Pagoni, Ioanna, 2014. "CO2 emissions associated with hubbing activities in air transport: an international comparison," Journal of Transport Geography, Elsevier, vol. 34(C), pages 185-193.
    7. Miyoshi, C. & Mason, K.J., 2009. "The carbon emissions of selected airlines and aircraft types in three geographic markets," Journal of Air Transport Management, Elsevier, vol. 15(3), pages 138-147.
    8. Debbage, Keith G. & Debbage, Neil, 2019. "Aviation carbon emissions, route choice and tourist destinations: Are non-stop routes a remedy?," Annals of Tourism Research, Elsevier, vol. 79(C).
    9. Ryley, Tim & Baumeister, Stefan & Coulter, Liese, 2020. "Climate change influences on aviation: A literature review," Transport Policy, Elsevier, vol. 92(C), pages 55-64.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Debbage, Keith G. & Debbage, Neil, 2019. "Aviation carbon emissions, route choice and tourist destinations: Are non-stop routes a remedy?," Annals of Tourism Research, Elsevier, vol. 79(C).
    2. Till Kösters & Marlena Meier & Gernot Sieg, 2023. "Effects of the use-it-or-lose-it rule on airline strategy and climate," Working Papers 36, Institute of Transport Economics, University of Muenster.
    3. Lo, Pak Lam & Martini, Gianmaria & Porta, Flavio & Scotti, Davide, 2020. "The determinants of CO2 emissions of air transport passenger traffic: An analysis of Lombardy (Italy)," Transport Policy, Elsevier, vol. 91(C), pages 108-119.
    4. Osorio, Pilar & Cadarso, María-Ángeles & Tobarra, María-Ángeles & García-Alaminos, Ángela, 2023. "Carbon footprint of tourism in Spain: Covid-19 impact and a look forward to recovery," Structural Change and Economic Dynamics, Elsevier, vol. 65(C), pages 303-318.
    5. Xiong, Xueli & Song, Xiaomeng & Kaygorodova, Anna & Ding, Xichun & Guo, Lijia & Huang, Jiashun, 2023. "Aviation and carbon emissions: Evidence from airport operations," Journal of Air Transport Management, Elsevier, vol. 109(C).
    6. Park, Yongha & O’Kelly, Morton E., 2014. "Fuel burn rates of commercial passenger aircraft: variations by seat configuration and stage distance," Journal of Transport Geography, Elsevier, vol. 41(C), pages 137-147.
    7. Mardones, Cristian, 2021. "Ex-post evaluation and cost-benefit analysis of a heater replacement program implemented in southern Chile," Energy, Elsevier, vol. 227(C).
    8. Stefan Gössling & Frank Fichert & Peter Forsyth, 2017. "Subsidies in Aviation," Sustainability, MDPI, vol. 9(8), pages 1-19, July.
    9. Sven Maertens & Wolfgang Grimme & Janina Scheelhaase & Martin Jung, 2019. "Options to Continue the EU ETS for Aviation in a CORSIA-World," Sustainability, MDPI, vol. 11(20), pages 1-19, October.
    10. Liao, Weijun & Fan, Ying & Wang, Chunan, 2022. "How does COVID-19 affect the implementation of CORSIA?," Journal of Air Transport Management, Elsevier, vol. 99(C).
    11. Lyu, Chen & Liu, Xiaoman & Wang, Zhen & Yang, Lu & Liu, Hao & Yang, Nan & Xu, Shaodong & Cao, Libin & Zhang, Zhe & Pang, Lingyun & Zhang, Li & Cai, Bofeng, 2023. "An emissions inventory using flight information reveals the long-term changes of aviation CO2 emissions in China," Energy, Elsevier, vol. 262(PB).
    12. Doerr, Luisa & Dorn, Florian & Gaebler, Stefanie & Potrafke, Niklas, 2020. "How new airport infrastructure promotes tourism: evidence from a synthetic control approach in German regions," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 54(10), pages 1402-1412.
    13. Wu, Hanjun & Hong Tsui, Kan Wai & Ngo, Thanh & Lin, Yi-Hsin, 2020. "Impacts of aviation subsidies on regional wellbeing: Systematic review, meta-analysis and future research directions," Transport Policy, Elsevier, vol. 99(C), pages 215-239.
    14. Myung Je Lee & Changhee Kim, 2018. "A network DEA aeronautical and non-aeronautical production model: an application to South Korea airports," Journal of Economic Structures, Springer;Pan-Pacific Association of Input-Output Studies (PAPAIOS), vol. 7(1), pages 1-12, December.
    15. Qiu, Rui & Hou, Shuhua & Meng, Zhiyi, 2021. "Low carbon air transport development trends and policy implications based on a scientometrics-based data analysis system," Transport Policy, Elsevier, vol. 107(C), pages 1-10.
    16. Winchester, Niven, 2019. "A win-win solution to abate aviation CO2 emissions," Journal of Air Transport Management, Elsevier, vol. 80(C), pages 1-1.
    17. Gutiérrez, Ester & Lozano, Sebastián, 2016. "Efficiency assessment and output maximization possibilities of European small and medium sized airports," Research in Transportation Economics, Elsevier, vol. 56(C), pages 3-14.
    18. Frédéric Dobruszkes & Didier Peeters, 2019. "The magnitude of detours faced by commercial flights: A global assessment," ULB Institutional Repository 2013/293811, ULB -- Universite Libre de Bruxelles.
    19. Jae Hee Park & Ji Hee Kim, 2021. "The Impact of Airport Managerial Type and Airline Market Share on Airport Efficiency," Sustainability, MDPI, vol. 13(2), pages 1-16, January.
    20. Miyoshi, Chikage, 2014. "Assessing the equity impact of the European Union Emission Trading Scheme on an African airline," Transport Policy, Elsevier, vol. 33(C), pages 56-64.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jaitra:v:101:y:2022:i:c:s0969699722000254. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/journal-of-air-transport-management/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.