IDEAS home Printed from https://ideas.repec.org/a/eee/jaitra/v67y2018icp55-62.html
   My bibliography  Save this article

EU ETS versus CORSIA – A critical assessment of two approaches to limit air transport's CO2 emissions by market-based measures

Author

Listed:
  • Scheelhaase, Janina
  • Maertens, Sven
  • Grimme, Wolfgang
  • Jung, Martin

Abstract

To limit air transport's climate relevant emissions, two important CO2 trading schemes for aviation are in force, or will be in the future: The EU Emissions Trading Scheme (EU ETS) for aviation, which was introduced in 2012, and the Carbon Offsetting and Reduction Scheme for International Aviation (CORSIA) as agreed at International Civil Aviation Organization (ICAO) level in October 2016. The authors analyze and compare both schemes from an environmental and competition perspective. Also, options for proceeding with the EU ETS are discussed.

Suggested Citation

  • Scheelhaase, Janina & Maertens, Sven & Grimme, Wolfgang & Jung, Martin, 2018. "EU ETS versus CORSIA – A critical assessment of two approaches to limit air transport's CO2 emissions by market-based measures," Journal of Air Transport Management, Elsevier, vol. 67(C), pages 55-62.
  • Handle: RePEc:eee:jaitra:v:67:y:2018:i:c:p:55-62
    DOI: 10.1016/j.jairtraman.2017.11.007
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0969699717303277
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jairtraman.2017.11.007?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Anger, Annela & Köhler, Jonathan, 2010. "Including aviation emissions in the EU ETS: Much ado about nothing? A review," Transport Policy, Elsevier, vol. 17(1), pages 38-46, January.
    2. Ko, Young Dae & Jang, Young Jae & Kim, Dae Young, 2017. "Strategic airline operation considering the carbon constrained air transport industry," Journal of Air Transport Management, Elsevier, vol. 62(C), pages 1-9.
    3. Zanin, Massimiliano & Delibasi, Tuba Toru & Triana, Julio César & Mirchandani, Vaishali & à lvarez Pereira, Emilio & Enrich, Alberto & Perez, David & Paşaoğlu, Cengiz & Fidanoglu, Melih & Koyuncu, , 2016. "Towards a secure trading of aviation CO2 allowance," Journal of Air Transport Management, Elsevier, vol. 56(PA), pages 3-11.
    4. Meleo, Linda & Nava, Consuelo R. & Pozzi, Cesare, 2016. "Aviation and the costs of the European Emission Trading Scheme: The case of Italy," Energy Policy, Elsevier, vol. 88(C), pages 138-147.
    5. Nordhaus, William, 1982. "How Fast Should We Graze the Global Commons?," American Economic Review, American Economic Association, vol. 72(2), pages 242-246, May.
    6. Lu, Cherie, 2009. "The implications of environmental costs on air passenger demand for different airline business models," Journal of Air Transport Management, Elsevier, vol. 15(4), pages 158-165.
    7. Tae H. Oum & Waters, W.G. & Jong Say Yong, 1990. "A survey of recent estimates of price elasticities of demand for transport," Policy Research Working Paper Series 359, The World Bank.
    8. Becken, Susanne & Mackey, Brendan, 2017. "What role for offsetting aviation greenhouse gas emissions in a deep-cut carbon world?," Journal of Air Transport Management, Elsevier, vol. 63(C), pages 71-83.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Scheelhaase, Janina D., 2019. "How to regulate aviation's full climate impact as intended by the EU council from 2020 onwards," Journal of Air Transport Management, Elsevier, vol. 75(C), pages 68-74.
    2. Nava, Consuelo R. & Meleo, Linda & Cassetta, Ernesto & Morelli, Giovanna, 2018. "The impact of the EU-ETS on the aviation sector: Competitive effects of abatement efforts by airlines," Transportation Research Part A: Policy and Practice, Elsevier, vol. 113(C), pages 20-34.
    3. Mancuso, Paolo, 2014. "An analysis of the competition that impinges on the Milan–Rome intercity passenger transport link," Transport Policy, Elsevier, vol. 32(C), pages 42-52.
    4. Liao, Weijun & Wang, Chunan, 2021. "Airline emissions charges and airline networks," Journal of Air Transport Management, Elsevier, vol. 92(C).
    5. Pagoni, Ioanna & Psaraki-Kalouptsidi, Voula, 2016. "The impact of carbon emission fees on passenger demand and air fares: A game theoretic approach," Journal of Air Transport Management, Elsevier, vol. 55(C), pages 41-51.
    6. Aneta Wlodarczyk, 2017. "Regime-dependent Assessment of Risk Concerning the International Aviation Inclusion Into the EU ETS," Dynamic Econometric Models, Uniwersytet Mikolaja Kopernika, vol. 17, pages 129-145.
    7. Suresh Chandran & Murugan Anandarajan, 2020. "Decision Support System for Selecting Sustainable Alternatives to Conventional Jet Fuel: Impact of Emissions, Production Costs and Carbon Pricing," Journal of Management and Sustainability, Canadian Center of Science and Education, vol. 10(1), pages 1-83, July.
    8. Xuanyu Yue & Julie Byrne, 2021. "Linking the Determinants of Air Passenger Flows and Aviation Related Carbon Emissions: A European Study," Sustainability, MDPI, vol. 13(14), pages 1-16, July.
    9. Andrea Luca Tasca & Vittorio Cipolla & Karim Abu Salem & Monica Puccini, 2021. "Innovative Box-Wing Aircraft: Emissions and Climate Change," Sustainability, MDPI, vol. 13(6), pages 1-25, March.
    10. Wolter, Alexander H. & Ehlers, Thorsten & Luetjens, Klaus & Gollnick, Volker, 2021. "Commodity price pass-through in the US airline industry and the hidden perks of consolidation," Journal of Air Transport Management, Elsevier, vol. 95(C).
    11. Jakovljević, Ivan & Mijailović, Radomir & Mirosavljević, Petar, 2018. "Carbon dioxide emission during the life cycle of turbofan aircraft," Energy, Elsevier, vol. 148(C), pages 866-875.
    12. Md Arif Hasan & Abdullah Al Mamun & Syed Masiur Rahman & Karim Malik & Md. Iqram Uddin Al Amran & Abu Nasser Khondaker & Omer Reshi & Surya Prakash Tiwari & Fahad Saleh Alismail, 2021. "Climate Change Mitigation Pathways for the Aviation Sector," Sustainability, MDPI, vol. 13(7), pages 1-29, March.
    13. Oesingmann, Katrin, 2022. "The effect of the European Emissions Trading System (EU ETS) on aviation demand: An empirical comparison with the impact of ticket taxes," Energy Policy, Elsevier, vol. 160(C).
    14. Bridgelall, Raj & Stubbing, Edward, 2021. "Forecasting the effects of autonomous vehicles on land use," Technological Forecasting and Social Change, Elsevier, vol. 163(C).
    15. Hermeling, Claudia & Klement, Jan Henrik & Koesler, Simon & Köhler, Jonathan & Klement, Dorothee, 2015. "Sailing into a dilemma," Transportation Research Part A: Policy and Practice, Elsevier, vol. 78(C), pages 34-53.
    16. Smulders, Sjak & Gradus, Raymond, 1996. "Pollution abatement and long-term growth," European Journal of Political Economy, Elsevier, vol. 12(3), pages 505-532, November.
    17. Becken, Susanne & Stantic, Bela & Chen, Jinyan & Connolly, Rod M., 2022. "Twitter conversations reveal issue salience of aviation in the broader context of climate change," Journal of Air Transport Management, Elsevier, vol. 98(C).
    18. Stavins, Robert & Hahn, Robert & Cavanagh, Sheila, 2001. "National Environmental Policy During the Clinton Years," RFF Working Paper Series dp-01-38, Resources for the Future.
    19. D’Alfonso, Tiziana & Jiang, Changmin & Bracaglia, Valentina, 2016. "Air transport and high-speed rail competition: Environmental implications and mitigation strategies," Transportation Research Part A: Policy and Practice, Elsevier, vol. 92(C), pages 261-276.
    20. Agliardi, Elettra & Xepapadeas, Anastasios, 2022. "Temperature targets, deep uncertainty and extreme events in the design of optimal climate policy," Journal of Economic Dynamics and Control, Elsevier, vol. 139(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jaitra:v:67:y:2018:i:c:p:55-62. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/journal-of-air-transport-management/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.