IDEAS home Printed from https://ideas.repec.org/a/spr/minecn/v33y2020i1d10.1007_s13563-018-00167-y.html
   My bibliography  Save this article

Fifty years of copper mining: the US labor productivity

Author

Listed:
  • Hamit Aydin

    (Zonguldak Bulent Ecevit University)

Abstract

In the past 50 years, the US copper mining industry has experienced remarkable changes. During the 1970s and early 1980s, the US copper mining industry suffered a major recession. However, a few companies survived by implementing severe cost-cutting measures through innovation and technological changes. These efforts, in turn, helped quintuple labor productivity in the three decades following. Then from 2003 to 2012, labor productivity declined sharply to the levels equal to those of the early 1980s. This decline, following years of rising productivity, has led to questioning the effects of innovation and technological change on mining labor productivity. It has been argued that new technology will no longer be able to offset the adverse effects of depletion thus resulting in higher prices in the future. This study investigates the determinants of copper mining labor productivity empirically, and the extent to which they may vary cyclically for longer time spans (1965 to 2015) from the US perspective. The statistical model examines the level of labor productivity as a function of copper price, recoverable copper content of ore (percentage yield), production share of leaching, mine production index, and time trend. Overall, the results support the conclusion that falling productivity is mostly cyclical.

Suggested Citation

  • Hamit Aydin, 2020. "Fifty years of copper mining: the US labor productivity," Mineral Economics, Springer;Raw Materials Group (RMG);Luleå University of Technology, vol. 33(1), pages 11-19, July.
  • Handle: RePEc:spr:minecn:v:33:y:2020:i:1:d:10.1007_s13563-018-00167-y
    DOI: 10.1007/s13563-018-00167-y
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s13563-018-00167-y
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s13563-018-00167-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Andrew Sharpe & Celeste Bradley, 2009. "A Detailed Analysis of the Productivity Performance of Mining in Canada," CSLS Research Reports 2009-07, Centre for the Study of Living Standards.
    2. Aydin, Hamit & Tilton, John E., 2000. "Mineral endowment, labor productivity, and comparative advantage in mining," Resource and Energy Economics, Elsevier, vol. 22(4), pages 281-293, October.
    3. Bartos, P. J., 2002. "SX-EW copper and the technology cycle," Resources Policy, Elsevier, vol. 28(3-4), pages 85-94.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. John E. Tilton, 2013. "Cyclical and Secular Determinants of Productivity in the Copper, Aluminum, Iron Ore, and Coal Industries," Working Papers 2013-11, Colorado School of Mines, Division of Economics and Business.
    2. Calzada Olvera, Beatriz & Iizuka, Michiko, 2020. "How does innovation take place in the mining industry? : Understanding the logic behind innovation in a changing context," MERIT Working Papers 2020-019, United Nations University - Maastricht Economic and Social Research Institute on Innovation and Technology (MERIT).
    3. Bartos, Paul J., 2007. "Is mining a high-tech industry: Investigations into innovation and productivity advance," Resources Policy, Elsevier, vol. 32(4), pages 149-158, December.
    4. Eva Pakostova & Anuradha Herath, 2023. "A Bioleaching Process for Sustainable Recycling of Complex Structures with Multi-Metal Layers," Sustainability, MDPI, vol. 15(19), pages 1-18, September.
    5. Bartos, P. J., 2002. "SX-EW copper and the technology cycle," Resources Policy, Elsevier, vol. 28(3-4), pages 85-94.
    6. Pothen, Frank, 2013. "The metal resources (METRO) model: A dynamic partial equilibrium model for metal markets applied to rare earth elements," ZEW Discussion Papers 13-112, ZEW - Leibniz Centre for European Economic Research.
    7. Jeannette Graulau, 2008. "‘Is mining good for development?’," Progress in Development Studies, , vol. 8(2), pages 129-162, April.
    8. Bajo-Buenestado, Raúl, 2018. "Relationship-specificity, incomplete contracts, and the pattern of trade: A comment on the role of natural resources," Energy Economics, Elsevier, vol. 75(C), pages 410-422.
    9. Joaquín Jara, J. & Pérez, Patricio & Villalobos, Pablo, 2010. "Good deposits are not enough: Mining labor productivity analysis in the copper industry in Chile and Peru 1992-2009," Resources Policy, Elsevier, vol. 35(4), pages 247-256, December.
    10. Stuermer, Martin & Schwerhoff, Gregor, 2013. "Technological change in resource extraction and endogenous growth," Bonn Econ Discussion Papers 12/2013, University of Bonn, Bonn Graduate School of Economics (BGSE).
    11. Manoj Kumar Mohanty & Padma Charan Mishra & Alaka Samantaray, 2023. "The Relationship of Critical Success Factors of the Mineral Industry: A Study on India," Vision, , vol. 27(1), pages 119-134, February.
    12. Sam Mitra, 2019. "Depletion, technology, and productivity growth in the metallic minerals industry," Mineral Economics, Springer;Raw Materials Group (RMG);Luleå University of Technology, vol. 32(1), pages 19-37, April.
    13. Harold L. Cole & Lee E. Ohanian & Álvaro José Riascos & James A. Schmitz, 2006. "Latin America in the rearview mirror," Quarterly Review, Federal Reserve Bank of Minneapolis, vol. 30(Sep).
    14. Filippou, Dimitrios & King, Michael G., 2011. "R&D prospects in the mining and metals industry," Resources Policy, Elsevier, vol. 36(3), pages 276-284, September.
    15. Gregor Schwerhoff & Martin Stuermer, 2015. "Non-renewable resources, extraction technology, and endogenous growth," Working Papers 1506, Federal Reserve Bank of Dallas.
    16. Andrew Sharpe & Blair Long, 2012. "Innovation in Canadian Natural Resource Industries: A Systems-Based Analysis of Performance, Policy and Emerging Challenges," CSLS Research Reports 2012-06, Centre for the Study of Living Standards.
    17. James A. Schmitz Jr., 2005. "What Determines Productivity? Lessons from the Dramatic Recovery of the U.S. and Canadian Iron Ore Industries Following Their Early 1980s Crisis," Journal of Political Economy, University of Chicago Press, vol. 113(3), pages 582-625, June.
    18. Lin Zhou & Jianglong Li & Yangqing Dan & Chunping Xie & Houyin Long & Hongxun Liu, 2019. "Entering and Exiting: Productivity Evolution of Energy Supply in China," Sustainability, MDPI, vol. 11(4), pages 1-19, February.
    19. Tobias A. Jopp, 2015. "Did closures do any good? Labour productivity, mine dynamics, and rationalization in interwar Ruhr coal-mining," Working Papers 0085, European Historical Economics Society (EHES).
    20. Radetzki, Marian, 2009. "Seven thousand years in the service of humanity--the history of copper, the red metal," Resources Policy, Elsevier, vol. 34(4), pages 176-184, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:minecn:v:33:y:2020:i:1:d:10.1007_s13563-018-00167-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.