IDEAS home Printed from https://ideas.repec.org/a/spr/metrik/v81y2018i6d10.1007_s00184-018-0675-y.html
   My bibliography  Save this article

A residual-based multivariate constant correlation test

Author

Listed:
  • Fang Duan

    (Technische Universität Dortmund
    Ruhr Graduate School in Economics)

  • Dominik Wied

    (Universität zu Köln)

Abstract

We propose a new multivariate constant correlation test based on residuals. This test takes into account the whole correlation matrix instead of the considering merely marginal correlations between bivariate data series. In financial markets, it is unrealistic to assume that the marginal variances are constant. This motivates us to develop a constant correlation test which allows for non-constant marginal variances in multivariate time series. However, when the assumption of constant marginal variances is relaxed, it can be shown that the residual effect leads to nonstandard limit distributions of the test statistics based on residual terms. The critical values of the test statistics are not directly available and we use a bootstrap approximation to obtain the corresponding critical values for the test. We also derive the limit distribution of the test statistics based on residuals under the null hypothesis. Monte Carlo simulations show that the test has appealing size and power properties in finite samples. We also apply our test to the stock returns in Euro Stoxx 50 and integrate the test into a binary segmentation algorithm to detect multiple break points.

Suggested Citation

  • Fang Duan & Dominik Wied, 2018. "A residual-based multivariate constant correlation test," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 81(6), pages 653-687, August.
  • Handle: RePEc:spr:metrik:v:81:y:2018:i:6:d:10.1007_s00184-018-0675-y
    DOI: 10.1007/s00184-018-0675-y
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00184-018-0675-y
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00184-018-0675-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hansen, Lars Peter, 1982. "Large Sample Properties of Generalized Method of Moments Estimators," Econometrica, Econometric Society, vol. 50(4), pages 1029-1054, July.
    2. Zhou Zhou, 2013. "Heteroscedasticity and Autocorrelation Robust Structural Change Detection," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 108(502), pages 726-740, June.
    3. Horowitz, J., 1996. "Bootstrap Critical Values For Tests Based On The Smoothed Maximum Score Estimator," SFB 373 Discussion Papers 1996,44, Humboldt University of Berlin, Interdisciplinary Research Project 373: Quantification and Simulation of Economic Processes.
    4. Andrews, Donald W K, 1991. "Heteroskedasticity and Autocorrelation Consistent Covariance Matrix Estimation," Econometrica, Econometric Society, vol. 59(3), pages 817-858, May.
    5. Jushan Bai & Serena Ng, 2005. "Tests for Skewness, Kurtosis, and Normality for Time Series Data," Journal of Business & Economic Statistics, American Statistical Association, vol. 23, pages 49-60, January.
    6. Galeano, Pedro & Wied, Dominik, 2014. "Multiple break detection in the correlation structure of random variables," Computational Statistics & Data Analysis, Elsevier, vol. 76(C), pages 262-282.
    7. Dimitris Politis & Halbert White, 2004. "Automatic Block-Length Selection for the Dependent Bootstrap," Econometric Reviews, Taylor & Francis Journals, vol. 23(1), pages 53-70.
    8. Joel L. Horowitz, 1996. "Bootstrap Critical Values for Tests Based on the Smoothed Maximum Score Estimator," Econometrics 9603003, University Library of Munich, Germany.
    9. Berens, Tobias & Weiß, Gregor N.F. & Wied, Dominik, 2015. "Testing for structural breaks in correlations: Does it improve Value-at-Risk forecasting?," Journal of Empirical Finance, Elsevier, vol. 32(C), pages 135-152.
    10. Inoue, Atsushi & Shintani, Mototsugu, 2006. "Bootstrapping GMM estimators for time series," Journal of Econometrics, Elsevier, vol. 133(2), pages 531-555, August.
    11. Hall, Peter & Horowitz, Joel L, 1996. "Bootstrap Critical Values for Tests Based on Generalized-Method-of-Moments Estimators," Econometrica, Econometric Society, vol. 64(4), pages 891-916, July.
    12. Ploberger, Werner & Kramer, Walter, 1992. "The CUSUM Test with OLS Residuals," Econometrica, Econometric Society, vol. 60(2), pages 271-285, March.
    13. Pape, Katharina & Wied, Dominik & Galeano, Pedro, 2016. "Monitoring multivariate variance changes," Journal of Empirical Finance, Elsevier, vol. 39(PA), pages 54-68.
    14. Pedro Galeano & Dominik Wied, 2017. "Dating multiple change points in the correlation matrix," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 26(2), pages 331-352, June.
    15. Dominik Wied, 2017. "A nonparametric test for a constant correlation matrix," Econometric Reviews, Taylor & Francis Journals, vol. 36(10), pages 1157-1172, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Duan, Fang, 2022. "Forecasting risk measures based on structural breaks in the correlation matrix," Ruhr Economic Papers 945, RWI - Leibniz-Institut für Wirtschaftsforschung, Ruhr-University Bochum, TU Dortmund University, University of Duisburg-Essen.
    2. Ji-Eun Choi & Dong Wan Shin, 2021. "A self-normalization break test for correlation matrix," Statistical Papers, Springer, vol. 62(5), pages 2333-2353, October.
    3. N. Henze & C. Kirch & S. G. Meintanis, 2018. "Special Issue with papers from the “3rd workshop on Goodness-of-fit and change-point problems”," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 81(6), pages 587-588, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Paulo M. D. C. Parente & Richard J. Smith, 2021. "Quasi‐maximum likelihood and the kernel block bootstrap for nonlinear dynamic models," Journal of Time Series Analysis, Wiley Blackwell, vol. 42(4), pages 377-405, July.
    2. La Vecchia, Davide & Moor, Alban & Scaillet, Olivier, 2023. "A higher-order correct fast moving-average bootstrap for dependent data," Journal of Econometrics, Elsevier, vol. 235(1), pages 65-81.
    3. Hill, Jonathan B. & Prokhorov, Artem, 2016. "GEL estimation for heavy-tailed GARCH models with robust empirical likelihood inference," Journal of Econometrics, Elsevier, vol. 190(1), pages 18-45.
    4. Allen, Jason & Gregory, Allan W. & Shimotsu, Katsumi, 2011. "Empirical likelihood block bootstrapping," Journal of Econometrics, Elsevier, vol. 161(2), pages 110-121, April.
    5. Lee, Seojeong, 2014. "Asymptotic refinements of a misspecification-robust bootstrap for generalized method of moments estimators," Journal of Econometrics, Elsevier, vol. 178(P3), pages 398-413.
    6. Wolfgang Härdle & Joel Horowitz & Jens‐Peter Kreiss, 2003. "Bootstrap Methods for Time Series," International Statistical Review, International Statistical Institute, vol. 71(2), pages 435-459, August.
    7. Seojeong Lee, 2018. "Asymptotic Refinements of a Misspecification-Robust Bootstrap for Generalized Empirical Likelihood Estimators," Papers 1806.00953, arXiv.org, revised Jun 2018.
    8. Dovonon, Prosper & Gonçalves, Sílvia, 2017. "Bootstrapping the GMM overidentification test under first-order underidentification," Journal of Econometrics, Elsevier, vol. 201(1), pages 43-71.
    9. Guay, Alain, 2021. "Identification of structural vector autoregressions through higher unconditional moments," Journal of Econometrics, Elsevier, vol. 225(1), pages 27-46.
    10. Lee, Seojeong, 2016. "Asymptotic refinements of a misspecification-robust bootstrap for GEL estimators," Journal of Econometrics, Elsevier, vol. 192(1), pages 86-104.
    11. Alain Guay & Jean-Francois Lamarche, 2005. "The Information Content of Implied Probabilities to Detect Structural Change," Working Papers 0804, Brock University, Department of Economics, revised Oct 2008.
    12. Hwang, Jungbin & Valdés, Gonzalo, 2023. "Finite-sample corrected inference for two-step GMM in time series," Journal of Econometrics, Elsevier, vol. 234(1), pages 327-352.
    13. Jeremy Berkowitz & Lutz Kilian, 2000. "Recent developments in bootstrapping time series," Econometric Reviews, Taylor & Francis Journals, vol. 19(1), pages 1-48.
    14. Kundhi, Gubhinder & Rilstone, Paul, 2012. "Edgeworth expansions for GEL estimators," Journal of Multivariate Analysis, Elsevier, vol. 106(C), pages 118-146.
    15. Choi, Ji-Eun & Shin, Dong Wan, 2019. "Moving block bootstrapping for a CUSUM test for correlation change," Computational Statistics & Data Analysis, Elsevier, vol. 135(C), pages 95-106.
    16. Härdle, Wolfgang & Horowitz, Joel L. & Kreiss, Jens-Peter, 2001. "Bootstrap methods for time series," SFB 373 Discussion Papers 2001,59, Humboldt University of Berlin, Interdisciplinary Research Project 373: Quantification and Simulation of Economic Processes.
    17. Jaedo Choi & Jin Seo Cho & Hyungsik Roger Moon, 2020. "Sequentially Estimating the Structural Equation by Power Transformation," Working papers 2020rwp-162, Yonsei University, Yonsei Economics Research Institute.
    18. Vasco J. Gabriel & Luis F. Martins, 2010. "The Cost Channel Reconsidered: A Comment Using an Identification‐Robust Approach," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 42(8), pages 1703-1712, December.
    19. Hwang, Jungbin & Kang, Byunghoon & Lee, Seojeong, 2022. "A doubly corrected robust variance estimator for linear GMM," Journal of Econometrics, Elsevier, vol. 229(2), pages 276-298.
    20. Xuexin Wang, 2020. "A new class of tests for overidentifying restrictions in moment condition models," Econometric Reviews, Taylor & Francis Journals, vol. 39(5), pages 495-509, May.

    More about this item

    Keywords

    Structural breaks; Hypothesis testing; Correlation; Residual effect;
    All these keywords.

    JEL classification:

    • C12 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Hypothesis Testing: General
    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
    • C58 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Financial Econometrics

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:metrik:v:81:y:2018:i:6:d:10.1007_s00184-018-0675-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.