IDEAS home Printed from https://ideas.repec.org/a/spr/metcap/v24y2022i4d10.1007_s11009-022-09969-8.html
   My bibliography  Save this article

Approximations of Copulas via Transformed Moments

Author

Listed:
  • Robert M. Mnatsakanov

    (West Virginia University)

  • Hansjoerg Albrecher

    (University of Lausanne
    Swiss Finance Institute)

  • Stephane Loisel

    (Laboratoire de Sciences Actuarielle et Financière, ISFA)

Abstract

We study the problem of approximating the copula and copula density function from a sequence of transformed moments. In particular, when frequency moments of an underlying bivariate distribution are available, the uniform convergence of the reconstructed copula and the rate of approximation of the copula density function are obtained. Finally, the accuracies of the approximation and estimation are illustrated in a simulation study.

Suggested Citation

  • Robert M. Mnatsakanov & Hansjoerg Albrecher & Stephane Loisel, 2022. "Approximations of Copulas via Transformed Moments," Methodology and Computing in Applied Probability, Springer, vol. 24(4), pages 3175-3193, December.
  • Handle: RePEc:spr:metcap:v:24:y:2022:i:4:d:10.1007_s11009-022-09969-8
    DOI: 10.1007/s11009-022-09969-8
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11009-022-09969-8
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11009-022-09969-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jean-David FERMANIAN & Olivier SCAILLET, 2003. "Nonparametric Estimation of Copulas for Time Series," FAME Research Paper Series rp57, International Center for Financial Asset Management and Engineering.
    2. Mnatsakanov, Robert M., 2008. "Hausdorff moment problem: Reconstruction of probability density functions," Statistics & Probability Letters, Elsevier, vol. 78(13), pages 1869-1877, September.
    3. Janssen, Paul & Swanepoel, Jan & Veraverbeke, Noël, 2014. "A note on the asymptotic behavior of the Bernstein estimator of the copula density," Journal of Multivariate Analysis, Elsevier, vol. 124(C), pages 480-487.
    4. Biau, Gérard & Wegkamp, Marten, 2005. "A note on minimum distance estimation of copula densities," Statistics & Probability Letters, Elsevier, vol. 73(2), pages 105-114, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. O. Chatrabgoun & G. Parham & R. Chinipardaz, 2017. "A Legendre multiwavelets approach to copula density estimation," Statistical Papers, Springer, vol. 58(3), pages 673-690, September.
    2. Morettin Pedro A. & Toloi Clelia M.C. & Chiann Chang & de Miranda José C.S., 2011. "Wavelet Estimation of Copulas for Time Series," Journal of Time Series Econometrics, De Gruyter, vol. 3(3), pages 1-31, October.
    3. Harvey, A., 2008. "Dynamic distributions and changing copulas," Cambridge Working Papers in Economics 0839, Faculty of Economics, University of Cambridge.
    4. Jeffrey Racine, 2015. "Mixed data kernel copulas," Empirical Economics, Springer, vol. 48(1), pages 37-59, February.
    5. Fantazzini, Dean, 2011. "Analysis of multidimensional probability distributions with copula functions," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 22(2), pages 98-134.
    6. Faugeras, Olivier P., 2009. "A quantile-copula approach to conditional density estimation," Journal of Multivariate Analysis, Elsevier, vol. 100(9), pages 2083-2099, October.
    7. Nagler Thomas & Czado Claudia & Schellhase Christian, 2017. "Nonparametric estimation of simplified vine copula models: comparison of methods," Dependence Modeling, De Gruyter, vol. 5(1), pages 99-120, January.
    8. Göran Kauermann & Christian Schellhase & David Ruppert, 2013. "Flexible Copula Density Estimation with Penalized Hierarchical B-splines," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 40(4), pages 685-705, December.
    9. Beare, Brendan K. & Seo, Juwon, 2014. "Time Irreversible Copula-Based Markov Models," Econometric Theory, Cambridge University Press, vol. 30(5), pages 923-960, October.
    10. Dominicy, Yves & Hörmann, Siegfried & Ogata, Hiroaki & Veredas, David, 2013. "On sample marginal quantiles for stationary processes," Statistics & Probability Letters, Elsevier, vol. 83(1), pages 28-36.
    11. Rémillard, Bruno & Scaillet, Olivier, 2009. "Testing for equality between two copulas," Journal of Multivariate Analysis, Elsevier, vol. 100(3), pages 377-386, March.
    12. Dominique Guégan & Matteo Iacopini, 2018. "Nonparameteric forecasting of multivariate probability density functions," Documents de travail du Centre d'Economie de la Sorbonne 18012, Université Panthéon-Sorbonne (Paris 1), Centre d'Economie de la Sorbonne.
    13. Andrew J. Patton, 2004. "On the Out-of-Sample Importance of Skewness and Asymmetric Dependence for Asset Allocation," Journal of Financial Econometrics, Oxford University Press, vol. 2(1), pages 130-168.
    14. Harvey, Andrew, 2010. "Tracking a changing copula," Journal of Empirical Finance, Elsevier, vol. 17(3), pages 485-500, June.
    15. Rosenberg, Joshua V. & Schuermann, Til, 2006. "A general approach to integrated risk management with skewed, fat-tailed risks," Journal of Financial Economics, Elsevier, vol. 79(3), pages 569-614, March.
    16. Paul Doukhan & Jean-David Fermanian & Gabriel Lang, 2009. "An empirical central limit theorem with applications to copulas under weak dependence," Statistical Inference for Stochastic Processes, Springer, vol. 12(1), pages 65-87, February.
    17. Joshua V. Rosenberg, 2003. "Nonparametric pricing of multivariate contingent claims," Staff Reports 162, Federal Reserve Bank of New York.
    18. Pedro Alberto Morettin & Clélia Maria de Castro Toloi & Chang Chiann & José Carlos Simon de Miranda, 2010. "Wavelet Smoothed Empirical Copula Estimators," Brazilian Review of Finance, Brazilian Society of Finance, vol. 8(3), pages 263-281.
    19. Geman, Hélyette & Kharoubi, Cécile, 2008. "WTI crude oil Futures in portfolio diversification: The time-to-maturity effect," Journal of Banking & Finance, Elsevier, vol. 32(12), pages 2553-2559, December.
    20. Serge B. Provost & Yishan Zang, 2024. "Nonparametric Copula Density Estimation Methodologies," Mathematics, MDPI, vol. 12(3), pages 1-35, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:metcap:v:24:y:2022:i:4:d:10.1007_s11009-022-09969-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.