IDEAS home Printed from https://ideas.repec.org/a/spr/metcap/v20y2018i1d10.1007_s11009-017-9548-5.html
   My bibliography  Save this article

Asymptotics for the Euler-Discretized Hull-White Stochastic Volatility Model

Author

Listed:
  • Dan Pirjol
  • Lingjiong Zhu

    (Florida State University)

Abstract

We consider the stochastic volatility model d S t = σ t S t d W t ,d σ t = ω σ t d Z t , with (W t ,Z t ) uncorrelated standard Brownian motions. This is a special case of the Hull-White and the β=1 (log-normal) SABR model, which are widely used in financial practice. We study the properties of this model, discretized in time under several applications of the Euler-Maruyama scheme, and point out that the resulting model has certain properties which are different from those of the continuous time model. We study the asymptotics of the time-discretized model in the n→∞ limit of a very large number of time steps of size τ, at fixed β = 1 2 ω 2 τ n 2 $\beta =\frac 12\omega ^{2}\tau n^{2}$ and ρ = σ 0 2 τ $\rho ={\sigma _{0}^{2}}\tau $ , and derive three results: i) almost sure limits, ii) fluctuation results, and iii) explicit expressions for growth rates (Lyapunov exponents) of the positive integer moments of S t . Under the Euler-Maruyama discretization for (S t ,logσ t ), the Lyapunov exponents have a phase transition, which appears in numerical simulations of the model as a numerical explosion of the asset price moments. We derive criteria for the appearance of these explosions.

Suggested Citation

  • Dan Pirjol & Lingjiong Zhu, 2018. "Asymptotics for the Euler-Discretized Hull-White Stochastic Volatility Model," Methodology and Computing in Applied Probability, Springer, vol. 20(1), pages 289-331, March.
  • Handle: RePEc:spr:metcap:v:20:y:2018:i:1:d:10.1007_s11009-017-9548-5
    DOI: 10.1007/s11009-017-9548-5
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11009-017-9548-5
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11009-017-9548-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Benjamin Jourdain & Mohamed Sbai, 2013. "High order discretization schemes for stochastic volatility models," Post-Print hal-00409861, HAL.
    2. Martin Forde & Andrey Pogudin, 2013. "The Large-Maturity Smile For The Sabr And Cev-Heston Models," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 16(08), pages 1-20.
    3. Scott, Louis O., 1987. "Option Pricing when the Variance Changes Randomly: Theory, Estimation, and an Application," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 22(4), pages 419-438, December.
    4. Chesney, Marc & Scott, Louis, 1989. "Pricing European Currency Options: A Comparison of the Modified Black-Scholes Model and a Random Variance Model," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 24(3), pages 267-284, September.
    5. Guyon, Julien, 2006. "Euler scheme and tempered distributions," Stochastic Processes and their Applications, Elsevier, vol. 116(6), pages 877-904, June.
    6. Carole Bernard & Zhenyu Cui & Don McLeish, 2017. "On The Martingale Property In Stochastic Volatility Models Based On Time-Homogeneous Diffusions," Mathematical Finance, Wiley Blackwell, vol. 27(1), pages 194-223, January.
    7. Paul Glasserman & Philip Heidelberger & Perwez Shahabuddin, 1999. "Asymptotically Optimal Importance Sampling and Stratification for Pricing Path‐Dependent Options," Mathematical Finance, Wiley Blackwell, vol. 9(2), pages 117-152, April.
    8. Alan L. Lewis, 2000. "Option Valuation under Stochastic Volatility," Option Valuation under Stochastic Volatility, Finance Press, number ovsv, December.
    9. Archil Gulisashvili & Elias M. Stein, 2009. "Implied Volatility In The Hull–White Model," Mathematical Finance, Wiley Blackwell, vol. 19(2), pages 303-327, April.
    10. Tai-Ho Wang & Peter Laurence & Sheng-Li Wang, 2010. "Generalized uncorrelated SABR models with a high degree of symmetry," Quantitative Finance, Taylor & Francis Journals, vol. 10(6), pages 663-679.
    11. Dan Pirjol & Lingjiong Zhu, 2017. "Asymptotics for the Discrete-Time Average of the Geometric Brownian Motion and Asian Options," Papers 1706.09659, arXiv.org.
    12. Hull, John C & White, Alan D, 1987. "The Pricing of Options on Assets with Stochastic Volatilities," Journal of Finance, American Finance Association, vol. 42(2), pages 281-300, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dan Pirjol & Lingjiong Zhu, 2020. "Asymptotics of the time-discretized log-normal SABR model: The implied volatility surface," Papers 2001.09850, arXiv.org, revised Mar 2020.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dan Pirjol & Lingjiong Zhu, 2017. "Asymptotics for the Euler-Discretized Hull-White Stochastic Volatility Model," Papers 1707.00899, arXiv.org.
    2. Dan Pirjol & Lingjiong Zhu, 2020. "Asymptotics of the time-discretized log-normal SABR model: The implied volatility surface," Papers 2001.09850, arXiv.org, revised Mar 2020.
    3. Barone-Adesi, Giovanni & Rasmussen, Henrik & Ravanelli, Claudia, 2005. "An option pricing formula for the GARCH diffusion model," Computational Statistics & Data Analysis, Elsevier, vol. 49(2), pages 287-310, April.
    4. Wendong Zheng & Pingping Zeng, 2015. "Pricing timer options and variance derivatives with closed-form partial transform under the 3/2 model," Papers 1504.08136, arXiv.org.
    5. Gabriel G. Drimus, 2012. "Options on realized variance by transform methods: a non-affine stochastic volatility model," Quantitative Finance, Taylor & Francis Journals, vol. 12(11), pages 1679-1694, November.
    6. Wendong Zheng & Pingping Zeng, 2016. "Pricing timer options and variance derivatives with closed-form partial transform under the 3/2 model," Applied Mathematical Finance, Taylor & Francis Journals, vol. 23(5), pages 344-373, September.
    7. Henri Bertholon & Alain Monfort & Fulvio Pegoraro, 2006. "Pricing and Inference with Mixtures of Conditionally Normal Processes," Working Papers 2006-28, Center for Research in Economics and Statistics.
    8. Siem Jan Koopman & Eugenie Hol Uspensky, 2002. "The stochastic volatility in mean model: empirical evidence from international stock markets," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 17(6), pages 667-689.
    9. Asai, Manabu & Chang, Chia-Lin & McAleer, Michael, 2017. "Realized stochastic volatility with general asymmetry and long memory," Journal of Econometrics, Elsevier, vol. 199(2), pages 202-212.
    10. Lim, Terence & Lo, Andrew W. & Merton, Robert C. & Scholes, Myron S., 2006. "The Derivatives Sourcebook," Foundations and Trends(R) in Finance, now publishers, vol. 1(5–6), pages 365-572, April.
    11. Cui, Zhenyu & Kirkby, J. Lars & Nguyen, Duy, 2021. "Efficient simulation of generalized SABR and stochastic local volatility models based on Markov chain approximations," European Journal of Operational Research, Elsevier, vol. 290(3), pages 1046-1062.
    12. R. Merino & J. Pospíšil & T. Sobotka & J. Vives, 2018. "Decomposition Formula For Jump Diffusion Models," Journal of Enterprising Culture (JEC), World Scientific Publishing Co. Pte. Ltd., vol. 21(08), pages 1-36, December.
    13. Raul Merino & Jan Posp'iv{s}il & Tom'av{s} Sobotka & Josep Vives, 2019. "Decomposition formula for jump diffusion models," Papers 1906.06930, arXiv.org.
    14. David S. Bates, 1995. "Testing Option Pricing Models," NBER Working Papers 5129, National Bureau of Economic Research, Inc.
    15. David Heath & Simon Hurst & Eckhard Platen, 1999. "Modelling the Stochastic Dynamics of Volatility for Equity Indices," Research Paper Series 7, Quantitative Finance Research Centre, University of Technology, Sydney.
    16. Cui, Zhenyu & Kirkby, J. Lars & Nguyen, Duy, 2017. "Equity-linked annuity pricing with cliquet-style guarantees in regime-switching and stochastic volatility models with jumps," Insurance: Mathematics and Economics, Elsevier, vol. 74(C), pages 46-62.
    17. Yu, Jun & Yang, Zhenlin & Zhang, Xibin, 2006. "A class of nonlinear stochastic volatility models and its implications for pricing currency options," Computational Statistics & Data Analysis, Elsevier, vol. 51(4), pages 2218-2231, December.
    18. Alexander Lipton & Artur Sepp, 2022. "Toward an efficient hybrid method for pricing barrier options on assets with stochastic volatility," Papers 2202.07849, arXiv.org.
    19. Paola Zerilli, 2005. "Option pricing and spikes in volatility: theoretical and empirical analysis," Money Macro and Finance (MMF) Research Group Conference 2005 76, Money Macro and Finance Research Group.
    20. Broadie, Mark & Detemple, Jerome & Ghysels, Eric & Torres, Olivier, 2000. "American options with stochastic dividends and volatility: A nonparametric investigation," Journal of Econometrics, Elsevier, vol. 94(1-2), pages 53-92.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:metcap:v:20:y:2018:i:1:d:10.1007_s11009-017-9548-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.