Advanced Search
MyIDEAS: Login to save this article or follow this journal

Euler scheme and tempered distributions


Author Info

  • Guyon, Julien
Registered author(s):


    Given a smooth -valued diffusion starting at point x, we study how fast the Euler scheme with time step 1/n converges in law to the random variable . To be precise, we look for the class of test functions f for which the approximate expectation converges with speed 1/n to . When f is smooth with polynomially growing derivatives or, under a uniform hypoellipticity condition for X, when f is only measurable and bounded, it is known that there exists a constant C1f(x) such that If X is uniformly elliptic, we expand this result to the case when f is a tempered distribution. In such a case, (resp. ) has to be understood as (resp. ) where p(t,x,[dot operator]) (resp. pn(t,x,[dot operator])) is the density of (resp. ). In particular, (1) is valid when f is a measurable function with polynomial growth, a Dirac mass or any derivative of a Dirac mass. We even show that (1) remains valid when f is a measurable function with exponential growth. Actually our results are symmetric in the two space variables x and y of the transition density and we prove that for a function and an O(1/n2) remainder rn which are shown to have gaussian tails and whose dependence on t is made precise. We give applications to option pricing and hedging, proving numerical convergence rates for prices, deltas and gammas.

    Download Info

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
    File URL:
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

    Bibliographic Info

    Article provided by Elsevier in its journal Stochastic Processes and their Applications.

    Volume (Year): 116 (2006)
    Issue (Month): 6 (June)
    Pages: 877-904

    as in new window
    Handle: RePEc:eee:spapps:v:116:y:2006:i:6:p:877-904

    Contact details of provider:
    Web page:

    Order Information:
    Postal: http://

    Related research

    Keywords: Stochastic differential equation Euler scheme Rate of convergence Tempered distributions;


    References listed on IDEAS
    Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:
    as in new window
    1. Arturo Kohatsu & Roger Pettersson, 2002. "Variance reduction methods for simulation of densities on Wiener space," Economics Working Papers 597, Department of Economics and Business, Universitat Pompeu Fabra.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as in new window

    Cited by:
    1. Benjamin Jourdain & Mohamed Sbai, 2013. "High order discretization schemes for stochastic volatility models," Post-Print hal-00409861, HAL.
    2. Rainer Avikainen, 2009. "On irregular functionals of SDEs and the Euler scheme," Finance and Stochastics, Springer, vol. 13(3), pages 381-401, September.
    3. Aurélien Alfonsi & Benjamin Jourdain & Arturo Kohatsu-Higa, 2012. "Pathwise optimal transport bounds between a one-dimensional diffusion and its Euler scheme," Working Papers hal-00727430, HAL.
    4. Nicola Bruti-Liberati & Eckhard Platen, 2006. "Approximation of Jump Diffusions in Finance and Economics," Research Paper Series 176, Quantitative Finance Research Centre, University of Technology, Sydney.


    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.


    Access and download statistics


    When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:116:y:2006:i:6:p:877-904. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Zhang, Lei).

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.