IDEAS home Printed from https://ideas.repec.org/a/spr/metcap/v19y2017i2d10.1007_s11009-016-9493-8.html
   My bibliography  Save this article

Optimal Exercise Strategies for Operational Risk Insurance via Multiple Stopping Times

Author

Listed:
  • Rodrigo S. Targino

    (University College London)

  • Gareth W. Peters

    (University College London)

  • Georgy Sofronov

    (Macquarie University)

  • Pavel V. Shevchenko

    (CSIRO)

Abstract

In this paper we demonstrate how to develop analytic closed form solutions to optimal multiple stopping time problems arising in the setting in which the value function acts on a compound process that is modified by the actions taken at the stopping times. This class of problem is particularly relevant in insurance and risk management settings and we demonstrate this on an important application domain based on insurance strategies in Operational Risk management for financial institutions. In this area of risk management the most prevalent class of loss process models is the Loss Distribution Approach (LDA) framework which involves modelling annual losses via a compound process. Given an LDA model framework, we consider Operational Risk insurance products that mitigate the risk for such loss processes and may reduce capital requirements. In particular, we consider insurance products that grant the policy holder the right to insure k of its annual Operational losses in a horizon of T years. We consider two insurance product structures and two general model settings, the first are families of relevant LDA loss models that we can obtain closed form optimal stopping rules for under each generic insurance mitigation structure and then secondly classes of LDA models for which we can develop closed form approximations of the optimal stopping rules. In particular, for losses following a compound Poisson process with jump size given by an Inverse-Gaussian distribution and two generic types of insurance mitigation, we are able to derive analytic expressions for the loss process modified by the insurance application, as well as closed form solutions for the optimal multiple stopping rules in discrete time (annually). When the combination of insurance mitigation and jump size distribution does not lead to tractable stopping rules we develop a principled class of closed form approximations to the optimal decision rule. These approximations are developed based on a class of orthogonal Askey polynomial series basis expansion representations of the annual loss compound process distribution and functions of this annual loss.

Suggested Citation

  • Rodrigo S. Targino & Gareth W. Peters & Georgy Sofronov & Pavel V. Shevchenko, 2017. "Optimal Exercise Strategies for Operational Risk Insurance via Multiple Stopping Times," Methodology and Computing in Applied Probability, Springer, vol. 19(2), pages 487-518, June.
  • Handle: RePEc:spr:metcap:v:19:y:2017:i:2:d:10.1007_s11009-016-9493-8
    DOI: 10.1007/s11009-016-9493-8
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11009-016-9493-8
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11009-016-9493-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ghossoub, Mario, 2010. "Belief heterogeneity in the Arrow-Borch-Raviv insurance model," MPRA Paper 37630, University Library of Munich, Germany, revised 22 Mar 2012.
    2. Peters, Gareth W. & Byrnes, Aaron D. & Shevchenko, Pavel V., 2011. "Impact of insurance for operational risk: Is it worthwhile to insure or be insured for severe losses?," Insurance: Mathematics and Economics, Elsevier, vol. 48(2), pages 287-303, March.
    3. Gareth W. Peters & Rodrigo S. Targino & Pavel V. Shevchenko, 2013. "Understanding Operational Risk Capital Approximations: First and Second Orders," Papers 1303.2910, arXiv.org.
    4. René Carmona & Nizar Touzi, 2008. "Optimal Multiple Stopping And Valuation Of Swing Options," Mathematical Finance, Wiley Blackwell, vol. 18(2), pages 239-268, April.
    5. Patrick Jaillet & Ehud I. Ronn & Stathis Tompaidis, 2004. "Valuation of Commodity-Based Swing Options," Management Science, INFORMS, vol. 50(7), pages 909-921, July.
    6. Aase, Knut K., 1993. "Equilibrium in a Reinsurance Syndicate; Existence, Uniqueness and Characterization," ASTIN Bulletin, Cambridge University Press, vol. 23(2), pages 185-211, November.
    7. Longstaff, Francis A & Schwartz, Eduardo S, 2001. "Valuing American Options by Simulation: A Simple Least-Squares Approach," University of California at Los Angeles, Anderson Graduate School of Management qt43n1k4jb, Anderson Graduate School of Management, UCLA.
    8. Longstaff, Francis A & Schwartz, Eduardo S, 2001. "Valuing American Options by Simulation: A Simple Least-Squares Approach," The Review of Financial Studies, Society for Financial Studies, vol. 14(1), pages 113-147.
    9. Christian Gollier, 2005. "Some Aspects of the Economics of Catastrophe Risk Insurance," CESifo Working Paper Series 1409, CESifo.
    10. Sofronov, Georgy, 2013. "An optimal sequential procedure for a multiple selling problem with independent observations," European Journal of Operational Research, Elsevier, vol. 225(2), pages 332-336.
    11. Raviv, Artur, 1979. "The Design of an Optimal Insurance Policy," American Economic Review, American Economic Association, vol. 69(1), pages 84-96, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Georgy Yu. Sofronov, 2020. "An Optimal Double Stopping Rule for a Buying-Selling Problem," Methodology and Computing in Applied Probability, Springer, vol. 22(1), pages 1-12, March.
    2. Georgy Sofronov, 2020. "An Optimal Decision Rule for a Multiple Selling Problem with a Variable Rate of Offers," Mathematics, MDPI, vol. 8(5), pages 1-11, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rodrigo S. Targino & Gareth W. Peters & Georgy Sofronov & Pavel V. Shevchenko, 2013. "Optimal insurance purchase strategies via optimal multiple stopping times," Papers 1312.0424, arXiv.org.
    2. Nicolas Essis-Breton & Patrice Gaillardetz, 2020. "Fast Lower and Upper Estimates for the Price of Constrained Multiple Exercise American Options by Single Pass Lookahead Search and Nearest-Neighbor Martingale," Papers 2002.11258, arXiv.org.
    3. Hendrik Kohrs & Hermann Mühlichen & Benjamin R. Auer & Frank Schuhmacher, 2019. "Pricing and risk of swing contracts in natural gas markets," Review of Derivatives Research, Springer, vol. 22(1), pages 77-167, April.
    4. John Schoenmakers, 2012. "A pure martingale dual for multiple stopping," Finance and Stochastics, Springer, vol. 16(2), pages 319-334, April.
    5. Kourouvakalis, Stylianos, 2008. "Méthodes numériques pour la valorisation d'options swings et autres problèmes sur les matières premières," Economics Thesis from University Paris Dauphine, Paris Dauphine University, number 123456789/116 edited by Geman, Hélyette.
    6. Dong, Wenfeng & Kang, Boda, 2019. "Analysis of a multiple year gas sales agreement with make-up, carry-forward and indexation," Energy Economics, Elsevier, vol. 79(C), pages 76-96.
    7. Hanfeld, Marc & Schlüter, Stephan, 2016. "Operating a swing option on today's gas markets: How least squares Monte Carlo works and why it is beneficial," FAU Discussion Papers in Economics 10/2016, Friedrich-Alexander University Erlangen-Nuremberg, Institute for Economics.
    8. J. Lars Kirkby & Shi-Jie Deng, 2019. "Swing Option Pricing By Dynamic Programming With B-Spline Density Projection," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 22(08), pages 1-53, December.
    9. Aleksandrov, Nikolay & Espinoza, Raphael & Gyurkó, Lajos, 2013. "Optimal oil production and the world supply of oil," Journal of Economic Dynamics and Control, Elsevier, vol. 37(7), pages 1248-1263.
    10. Christian Yeo, 2023. "An analysis of least squares regression and neural networks approximation for the pricing of swing options," Papers 2307.04510, arXiv.org.
    11. Christian Bender, 2011. "Dual pricing of multi-exercise options under volume constraints," Finance and Stochastics, Springer, vol. 15(1), pages 1-26, January.
    12. Nadarajah, Selvaprabu & Margot, François & Secomandi, Nicola, 2017. "Comparison of least squares Monte Carlo methods with applications to energy real options," European Journal of Operational Research, Elsevier, vol. 256(1), pages 196-204.
    13. Cartea, Álvaro & Williams, Thomas, 2008. "UK gas markets: The market price of risk and applications to multiple interruptible supply contracts," Energy Economics, Elsevier, vol. 30(3), pages 829-846, May.
    14. Mike Ludkovski, 2020. "mlOSP: Towards a Unified Implementation of Regression Monte Carlo Algorithms," Papers 2012.00729, arXiv.org, revised Oct 2022.
    15. Matt Thompson & Matt Davison & Henning Rasmussen, 2009. "Natural gas storage valuation and optimization: A real options application," Naval Research Logistics (NRL), John Wiley & Sons, vol. 56(3), pages 226-238, April.
    16. R. Mark Reesor & T. James Marshall, 2020. "Forest of Stochastic Trees: A Method for Valuing Multiple Exercise Options," JRFM, MDPI, vol. 13(5), pages 1-31, May.
    17. Liu, Xiaoran & Ronn, Ehud I., 2020. "Using the binomial model for the valuation of real options in computing optimal subsidies for Chinese renewable energy investments," Energy Economics, Elsevier, vol. 87(C).
    18. Pflug, Georg C. & Broussev, Nikola, 2009. "Electricity swing options: Behavioral models and pricing," European Journal of Operational Research, Elsevier, vol. 197(3), pages 1041-1050, September.
    19. Hahn, Warren J. & Dyer, James S., 2008. "Discrete time modeling of mean-reverting stochastic processes for real option valuation," European Journal of Operational Research, Elsevier, vol. 184(2), pages 534-548, January.
    20. Kovacevic, Raimund M. & Pflug, Georg Ch., 2014. "Electricity swing option pricing by stochastic bilevel optimization: A survey and new approaches," European Journal of Operational Research, Elsevier, vol. 237(2), pages 389-403.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:metcap:v:19:y:2017:i:2:d:10.1007_s11009-016-9493-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.