IDEAS home Printed from https://ideas.repec.org/a/spr/mathme/v77y2013i3p407-421.html
   My bibliography  Save this article

Shape-preserving dynamic programming

Author

Listed:
  • Yongyang Cai
  • Kenneth Judd

Abstract

Dynamic programming is the essential tool in dynamic economic analysis. Problems such as portfolio allocation for individuals and optimal growth of national economies are typical examples. Numerical methods typically approximate the value function and use value function iteration to compute the value function for the optimal policy. Polynomial approximations are natural choices for approximating value functions when we know that the true value function is smooth. However, numerical value function iteration with polynomial approximations is unstable because standard methods such as interpolation and least squares fitting do not preserve shape. We introduce shape-preserving approximation methods that stabilize value function iteration, and are generally faster than previous stable methods such as piecewise linear interpolation. Copyright Springer-Verlag 2013

Suggested Citation

  • Yongyang Cai & Kenneth Judd, 2013. "Shape-preserving dynamic programming," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 77(3), pages 407-421, June.
  • Handle: RePEc:spr:mathme:v:77:y:2013:i:3:p:407-421
    DOI: 10.1007/s00186-012-0406-5
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s00186-012-0406-5
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s00186-012-0406-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Richard Bellman, 1957. "On a Dynamic Programming Approach to the Caterer Problem--I," Management Science, INFORMS, vol. 3(3), pages 270-278, April.
    2. Kenneth L. Judd, 1998. "Numerical Methods in Economics," MIT Press Books, The MIT Press, edition 1, volume 1, number 0262100711, December.
    3. Robert Fourer & David M. Gay & Brian W. Kernighan, 1990. "A Modeling Language for Mathematical Programming," Management Science, INFORMS, vol. 36(5), pages 519-554, May.
    4. Yongyang Cai & Kenneth L. Judd, 2010. "Stable and Efficient Computational Methods for Dynamic Programming," Journal of the European Economic Association, MIT Press, vol. 8(2-3), pages 626-634, 04-05.
    5. Cai, Yongyang & Judd, Kenneth L., 2012. "Dynamic programming with shape-preserving rational spline Hermite interpolation," Economics Letters, Elsevier, vol. 117(1), pages 161-164.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kathrin Glau & Mirco Mahlstedt & Christian Potz, 2018. "A new approach for American option pricing: The Dynamic Chebyshev method," Papers 1806.05579, arXiv.org.
    2. Yongyang Cai & Kenneth Judd & Jevgenijs Steinbuks, 2017. "A nonlinear certainty equivalent approximation method for dynamic stochastic problems," Quantitative Economics, Econometric Society, vol. 8(1), pages 117-147, March.
    3. Yongyang Cai & Kenneth Judd, 2015. "Dynamic programming with Hermite approximation," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 81(3), pages 245-267, June.
    4. Kristensen, Dennis & Mogensen, Patrick K. & Moon, Jong Myun & Schjerning, Bertel, 2021. "Solving dynamic discrete choice models using smoothing and sieve methods," Journal of Econometrics, Elsevier, vol. 223(2), pages 328-360.
    5. Yongyang Cai & Kenneth L. Judd & Rong Xu, 2013. "Numerical Solution of Dynamic Portfolio Optimization with Transaction Costs," NBER Working Papers 18709, National Bureau of Economic Research, Inc.
    6. Yongyang Cai & Kenneth Judd & Greg Thain & Stephen Wright, 2015. "Solving Dynamic Programming Problems on a Computational Grid," Computational Economics, Springer;Society for Computational Economics, vol. 45(2), pages 261-284, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yongyang Cai & Kenneth Judd, 2015. "Dynamic programming with Hermite approximation," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 81(3), pages 245-267, June.
    2. Yongyang Cai & Kenneth Judd & Greg Thain & Stephen Wright, 2015. "Solving Dynamic Programming Problems on a Computational Grid," Computational Economics, Springer;Society for Computational Economics, vol. 45(2), pages 261-284, February.
    3. Cai, Yongyang & Judd, Kenneth L., 2012. "Dynamic programming with shape-preserving rational spline Hermite interpolation," Economics Letters, Elsevier, vol. 117(1), pages 161-164.
    4. Yongyang Cai & Thomas S. Lontzek, 2019. "The Social Cost of Carbon with Economic and Climate Risks," Journal of Political Economy, University of Chicago Press, vol. 127(6), pages 2684-2734.
    5. Yongyang Cai & Kenneth L. Judd & Rong Xu, 2013. "Numerical Solution of Dynamic Portfolio Optimization with Transaction Costs," NBER Working Papers 18709, National Bureau of Economic Research, Inc.
    6. Yongyang Cai & Kenneth Judd & Jevgenijs Steinbuks, 2017. "A nonlinear certainty equivalent approximation method for dynamic stochastic problems," Quantitative Economics, Econometric Society, vol. 8(1), pages 117-147, March.
    7. John Stachurski, 2009. "Economic Dynamics: Theory and Computation," MIT Press Books, The MIT Press, edition 1, volume 1, number 0262012774, December.
    8. Mercedes Esteban-Bravo & Jose M. Vidal-Sanz & Gökhan Yildirim, 2014. "Valuing Customer Portfolios with Endogenous Mass and Direct Marketing Interventions Using a Stochastic Dynamic Programming Decomposition," Marketing Science, INFORMS, vol. 33(5), pages 621-640, September.
    9. Harold Cole & Felix Kubler, 2012. "Recursive Contracts, Lotteries and Weakly Concave Pareto Sets," Review of Economic Dynamics, Elsevier for the Society for Economic Dynamics, vol. 15(4), pages 479-500, October.
    10. Cai, Yongyang & Judd, Kenneth L. & Lontzek, Thomas S. & Michelangeli, Valentina & Su, Che-Lin, 2017. "A Nonlinear Programming Method For Dynamic Programming," Macroeconomic Dynamics, Cambridge University Press, vol. 21(2), pages 336-361, March.
    11. Yongyang Cai & Kenneth L. Judd, 2023. "A simple but powerful simulated certainty equivalent approximation method for dynamic stochastic problems," Quantitative Economics, Econometric Society, vol. 14(2), pages 651-687, May.
    12. Peter Schober & Julian Valentin & Dirk Pflüger, 2022. "Solving High-Dimensional Dynamic Portfolio Choice Models with Hierarchical B-Splines on Sparse Grids," Computational Economics, Springer;Society for Computational Economics, vol. 59(1), pages 185-224, January.
    13. King, Robert P. & Lohano, Heman D., 2006. "Accuracy of Numerical Solution to Dynamic Programming Models," Staff Papers 14230, University of Minnesota, Department of Applied Economics.
    14. Siwa Msangi & Richard E. Howitt, 2007. "Income distributional effects of using market‐based instruments for managing common property resources," Agricultural Economics, International Association of Agricultural Economists, vol. 37(s1), pages 249-259, December.
    15. Srisuma, Sorawoot & Linton, Oliver, 2012. "Semiparametric estimation of Markov decision processes with continuous state space," Journal of Econometrics, Elsevier, vol. 166(2), pages 320-341.
    16. Cai,Yongyang & Selod,Harris & Steinbuks,Jevgenijs, 2015. "Urbanization and property rights," Policy Research Working Paper Series 7486, The World Bank.
    17. Arellano, Cristina & Maliar, Lilia & Maliar, Serguei & Tsyrennikov, Viktor, 2016. "Envelope condition method with an application to default risk models," Journal of Economic Dynamics and Control, Elsevier, vol. 69(C), pages 436-459.
    18. Mauro Gaggero & Giorgio Gnecco & Marcello Sanguineti, 2014. "Approximate dynamic programming for stochastic N-stage optimization with application to optimal consumption under uncertainty," Computational Optimization and Applications, Springer, vol. 58(1), pages 31-85, May.
    19. Powell, Warren B., 2019. "A unified framework for stochastic optimization," European Journal of Operational Research, Elsevier, vol. 275(3), pages 795-821.
    20. Yongyang Cai & Kenneth L. Judd & Thomas S. Lontzek, 2013. "The Social Cost of Stochastic and Irreversible Climate Change," NBER Working Papers 18704, National Bureau of Economic Research, Inc.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:mathme:v:77:y:2013:i:3:p:407-421. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.