IDEAS home Printed from https://ideas.repec.org/a/spr/jsched/v20y2017i5d10.1007_s10951-017-0516-2.html
   My bibliography  Save this article

Finding an optimal Nash equilibrium to the multi-agent project scheduling problem

Author

Listed:
  • Cyril Briand

    (CNRS, LAAS
    Université de Toulouse)

  • Sandra Ulrich Ngueveu

    (CNRS, LAAS
    Université de Toulouse)

  • Přemysl Šůcha

    (CNRS, LAAS
    Czech Technical University in Prague)

Abstract

Large projects often involve a set of contractors, each in charge of a part of the project. In this paper, we assume that every contractor is self-interested and can control the duration of his/her activities, which can be shortened up to an incompressible limit, by gathering extra resources at a given cost. In this context, the resulting project makespan depends on all the contractors’ decisions. The customer of the project is interested in a short project makespan and offers a reward, proportional to the project makespan reduction, to be shared by the contractors. In practice, either the reward sharing policy results from an upfront agreement or payments are freely allocated by the customer. Each contractor is only interested in the maximization of his/her profit and behaves accordingly. This paper addresses the problem of finding a Nash equilibrium and a sharing policy that minimize the project makespan. The aim is to help the customer to determine the duration of the activities and the reward sharing policy such that no agent has an incentive to unilaterally deviate from this solution. We show that this problem is NP-hard and how it can be modeled and solved by mixed integer linear programming. Computational analysis on large instances proves the effectiveness of our approach. Based on an empirical investigation of the influence of reward sharing policies on the project makespan, the paper provides new insight into how a project’s customer should offer rewards to the contractors.

Suggested Citation

  • Cyril Briand & Sandra Ulrich Ngueveu & Přemysl Šůcha, 2017. "Finding an optimal Nash equilibrium to the multi-agent project scheduling problem," Journal of Scheduling, Springer, vol. 20(5), pages 475-491, October.
  • Handle: RePEc:spr:jsched:v:20:y:2017:i:5:d:10.1007_s10951-017-0516-2
    DOI: 10.1007/s10951-017-0516-2
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10951-017-0516-2
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10951-017-0516-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Moulin, Herve & Shenker, Scott, 1992. "Serial Cost Sharing," Econometrica, Econometric Society, vol. 60(5), pages 1009-1037, September.
    2. Yves Sprumont, 2008. "Nearly serial sharing methods," International Journal of Game Theory, Springer;Game Theory Society, vol. 37(2), pages 155-184, June.
    3. Joseph G. Szmerekovsky, 2005. "The Impact of Contractor Behavior on the Client's Payment-Scheduling Problem," Management Science, INFORMS, vol. 51(4), pages 629-640, April.
    4. Nalini Dayanand & Rema Padman, 2001. "Project Contracts and Payment Schedules: The Client's Problem," Management Science, INFORMS, vol. 47(12), pages 1654-1667, December.
    5. Hartmann, Sönke & Briskorn, Dirk, 2010. "A survey of variants and extensions of the resource-constrained project scheduling problem," European Journal of Operational Research, Elsevier, vol. 207(1), pages 1-14, November.
    6. Steve Phillips, Jr. & Mohamed I. Dessouky, 1977. "Solving the Project Time/Cost Tradeoff Problem Using the Minimal Cut Concept," Management Science, INFORMS, vol. 24(4), pages 393-400, December.
    7. De, Prabuddha & James Dunne, E. & Ghosh, Jay B. & Wells, Charles E., 1995. "The discrete time-cost tradeoff problem revisited," European Journal of Operational Research, Elsevier, vol. 81(2), pages 225-238, March.
    8. Moustapha Diaby & Jose M. Cruz & Aaron L. Nsakanda, 2011. "Project crashing in the presence of general non-linear activity time reduction costs," International Journal of Operational Research, Inderscience Enterprises Ltd, vol. 12(3), pages 318-332.
    9. Averbakh, Igor, 2010. "Nash equilibria in competitive project scheduling," European Journal of Operational Research, Elsevier, vol. 205(3), pages 552-556, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Šůcha, Přemysl & Agnetis, Alessandro & Šidlovský, Marko & Briand, Cyril, 2021. "Nash equilibrium solutions in multi-agent project scheduling with milestones," European Journal of Operational Research, Elsevier, vol. 294(1), pages 29-41.
    2. Claudio Szwarcfiter & Yale T. Herer & Avraham Shtub, 2022. "Project scheduling in a lean environment to maximize value and minimize overruns," Journal of Scheduling, Springer, vol. 25(2), pages 177-190, April.
    3. Alessandro Agnetis & Cyril Briand & Sandra Ulrich Ngueveu & Přemysl Šůcha, 2020. "Price of anarchy and price of stability in multi-agent project scheduling," Annals of Operations Research, Springer, vol. 285(1), pages 97-119, February.
    4. Oğuzhan Ahmet Arık & Erkan Köse & Jeffrey Yi-Lin Forrest, 2019. "Project Staff Scheduling with Theory of Coalition," Group Decision and Negotiation, Springer, vol. 28(4), pages 827-847, August.
    5. J. C. Gonçalves-Dosantos & I. García-Jurado & J. Costa, 2020. "Sharing delay costs in stochastic scheduling problems with delays," 4OR, Springer, vol. 18(4), pages 457-476, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhengwen He & Nengmin Wang & Pengxiang Li, 2014. "Simulated annealing for financing cost distribution based project payment scheduling from a joint perspective," Annals of Operations Research, Springer, vol. 213(1), pages 203-220, February.
    2. Estévez-Fernández, Arantza, 2012. "A game theoretical approach to sharing penalties and rewards in projects," European Journal of Operational Research, Elsevier, vol. 216(3), pages 647-657.
    3. Zhang, Jingwen & Elmaghraby, Salah E., 2014. "The relevance of the “alphorn of uncertainty” to the financial management of projects under uncertainty," European Journal of Operational Research, Elsevier, vol. 238(1), pages 65-76.
    4. Yves Sprumont, 2010. "An Axiomatization of the Serial Cost-Sharing Method," Econometrica, Econometric Society, vol. 78(5), pages 1711-1748, September.
    5. Hervé Moulin & Yves Sprumont, 2007. "Fair allocation of production externalities : recent results," Revue d'économie politique, Dalloz, vol. 117(1), pages 7-36.
    6. Šůcha, Přemysl & Agnetis, Alessandro & Šidlovský, Marko & Briand, Cyril, 2021. "Nash equilibrium solutions in multi-agent project scheduling with milestones," European Journal of Operational Research, Elsevier, vol. 294(1), pages 29-41.
    7. Sobel, Matthew J. & Szmerekovsky, Joseph G. & Tilson, Vera, 2009. "Scheduling projects with stochastic activity duration to maximize expected net present value," European Journal of Operational Research, Elsevier, vol. 198(3), pages 697-705, November.
    8. Alessandro Agnetis & Cyril Briand & Sandra Ulrich Ngueveu & Přemysl Šůcha, 2020. "Price of anarchy and price of stability in multi-agent project scheduling," Annals of Operations Research, Springer, vol. 285(1), pages 97-119, February.
    9. He, Zhengwen & Liu, Renjing & Jia, Tao, 2012. "Metaheuristics for multi-mode capital-constrained project payment scheduling," European Journal of Operational Research, Elsevier, vol. 223(3), pages 605-613.
    10. Mick Van Den Eeckhout & Broos Maenhout & Mario Vanhoucke, 2020. "Mode generation rules to define activity flexibility for the integrated project staffing problem with discrete time/resource trade-offs," Annals of Operations Research, Springer, vol. 292(1), pages 133-160, September.
    11. Brucker, Peter & Drexl, Andreas & Mohring, Rolf & Neumann, Klaus & Pesch, Erwin, 1999. "Resource-constrained project scheduling: Notation, classification, models, and methods," European Journal of Operational Research, Elsevier, vol. 112(1), pages 3-41, January.
    12. Eric Bahel, 2011. "The implications of the ranking axiom for discrete cost sharing methods," International Journal of Game Theory, Springer;Game Theory Society, vol. 40(3), pages 551-589, August.
    13. He, Zhengwen & Wang, Nengmin & Jia, Tao & Xu, Yu, 2009. "Simulated annealing and tabu search for multi-mode project payment scheduling," European Journal of Operational Research, Elsevier, vol. 198(3), pages 688-696, November.
    14. R L Bregman, 2009. "Preemptive expediting to improve project due date performance," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 60(1), pages 120-129, January.
    15. Bregman, Robert L., 2009. "A heuristic procedure for solving the dynamic probabilistic project expediting problem," European Journal of Operational Research, Elsevier, vol. 192(1), pages 125-137, January.
    16. Martin Skutella, 1998. "Approximation Algorithms for the Discrete Time-Cost Tradeoff Problem," Mathematics of Operations Research, INFORMS, vol. 23(4), pages 909-929, November.
    17. Wendi Tian & Erik Demeulemeester, 2014. "Railway scheduling reduces the expected project makespan over roadrunner scheduling in a multi-mode project scheduling environment," Annals of Operations Research, Springer, vol. 213(1), pages 271-291, February.
    18. Youngsub Chun & Boram Park, 2016. "The airport problem with capacity constraints," Review of Economic Design, Springer;Society for Economic Design, vol. 20(3), pages 237-253, September.
    19. Xiong, Jian & Leus, Roel & Yang, Zhenyu & Abbass, Hussein A., 2016. "Evolutionary multi-objective resource allocation and scheduling in the Chinese navigation satellite system project," European Journal of Operational Research, Elsevier, vol. 251(2), pages 662-675.
    20. Juarez, Ruben & Ko, Chiu Yu & Xue, Jingyi, 2018. "Sharing sequential values in a network," Journal of Economic Theory, Elsevier, vol. 177(C), pages 734-779.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jsched:v:20:y:2017:i:5:d:10.1007_s10951-017-0516-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.