IDEAS home Printed from https://ideas.repec.org/a/spr/joptap/v195y2022i2d10.1007_s10957-022-02102-2.html
   My bibliography  Save this article

A Population Harvesting Model with Time and Size Competition Dependence Function

Author

Listed:
  • B. Ainseba

    (Université de Bordeaux)

  • L. Louison

    (Université de Guyane)

  • A. Omrane

    (Université de Guyane)

Abstract

We consider a nonlinear model describing a forest harvesting of a size-structured trees population with intra-specific competition, where the population compete with trees of bigger size. Using a fixed point argument, we prove the existence of a unique solution to the problem. We also prove the existence of an optimal control where the objective functional includes the benefits from timber production. Then, we give the necessary condition of optimality for the optimal control and give its characterization as well.

Suggested Citation

  • B. Ainseba & L. Louison & A. Omrane, 2022. "A Population Harvesting Model with Time and Size Competition Dependence Function," Journal of Optimization Theory and Applications, Springer, vol. 195(2), pages 647-665, November.
  • Handle: RePEc:spr:joptap:v:195:y:2022:i:2:d:10.1007_s10957-022-02102-2
    DOI: 10.1007/s10957-022-02102-2
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10957-022-02102-2
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10957-022-02102-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. B. Skritek & V. M. Veliov, 2015. "On the Infinite-Horizon Optimal Control of Age-Structured Systems," Journal of Optimization Theory and Applications, Springer, vol. 167(1), pages 243-271, October.
    2. Olli Tahvonen, 2004. "Optimal Harvesting Of Forest Age Classes: A Survey Of Some Recent Results," Mathematical Population Studies, Taylor & Francis Journals, vol. 11(3-4), pages 205-232.
    3. Nobuyuki Kato & Hiroyuki Torikata, 1997. "Local existence for a general model of size-dependent population dynamics," Abstract and Applied Analysis, Hindawi, vol. 2, pages 1-20, January.
    4. Goetz, Renan Ulrich & Hritonenko, Natali & Mur, Ruben & Xabadia, Àngels & Yatsenko, Yuri, 2013. "Forest management for timber and carbon sequestration in the presence of climate change: The case of Pinus Sylvestris," Ecological Economics, Elsevier, vol. 88(C), pages 86-96.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Couture, Stéphane & Reynaud, Arnaud, 2011. "Forest management under fire risk when forest carbon sequestration has value," Ecological Economics, Elsevier, vol. 70(11), pages 2002-2011, September.
    2. Susaeta, Andres & Carter, Douglas R. & Adams, Damian C., 2014. "Impacts of Climate Change on Economics of Forestry and Adaptation Strategies in the Southern United States," Journal of Agricultural and Applied Economics, Southern Agricultural Economics Association, vol. 46(2), pages 1-16, May.
    3. Emmanuelle Augeraud-Véron & Raouf Boucekkine & Vladimir Veliov, 2019. "Distributed Optimal Control Models in Environmental Economics: A Review," Working Papers halshs-01982243, HAL.
    4. Fabbri, Giorgio & Gozzi, Fausto & Zanco, Giovanni, 2021. "Verification results for age-structured models of economic–epidemics dynamics," Journal of Mathematical Economics, Elsevier, vol. 93(C).
    5. Khan, M. Ali, 2016. "On a forest as a commodity and on commodification in the discipline of forestry," Forest Policy and Economics, Elsevier, vol. 72(C), pages 7-17.
    6. Pena-Levano, Luis M. & Taheripour, Farzad & Tyner, Wallace E., 2017. "Modeling Emission Reductions and Forest Carbon Sequestration in GTAP: Data Base and Model Improvements," 2017 Annual Meeting, July 30-August 1, Chicago, Illinois 258196, Agricultural and Applied Economics Association.
    7. MARTIN Jean-Christophe, 2015. "Identifying a supply-chain related to the use of renewable natural resource: Case studies from France and Aquitaine region," Cahiers du GREThA (2007-2019) 2015-19, Groupe de Recherche en Economie Théorique et Appliquée (GREThA).
    8. Pena-Levano, L. & Taheripour, F. & Tyner, W., 2018. "Cost comparison of climate change mitigation options," 2018 Conference, July 28-August 2, 2018, Vancouver, British Columbia 277417, International Association of Agricultural Economists.
    9. Luis Moisés Peña-Lévano & Farzad Taheripour & Wallace E. Tyner, 2019. "Climate Change Interactions with Agriculture, Forestry Sequestration, and Food Security," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 74(2), pages 653-675, October.
    10. Stéphane S. Couture & Marie-Josée Cros & Régis Sabbadin, 2014. "Risk preferences and optimal management of uneven-aged forests in the presence of climate change: a Markov decision process approach," Post-Print hal-02741407, HAL.
    11. Couture, Stéphane & Cros, Marie-Josée & Sabbadin, Régis, 2016. "Risk aversion and optimal management of an uneven-aged forest under risk of windthrow: A Markov decision process approach," Journal of Forest Economics, Elsevier, vol. 25(C), pages 94-114.
    12. Xabadia, Angels & Goetz, Renan U., 2010. "The optimal selective logging regime and the Faustmann formula," Journal of Forest Economics, Elsevier, vol. 16(1), pages 63-82, January.
    13. Adriana Piazza & Bernardo Pagnoncelli, 2014. "The optimal harvesting problem under price uncertainty," Annals of Operations Research, Springer, vol. 217(1), pages 425-445, June.
    14. Heaps, Terry, 2015. "Convergence of optimal harvesting policies to a normal forest," Journal of Economic Dynamics and Control, Elsevier, vol. 54(C), pages 74-85.
    15. Fabbri, Giorgio & Faggian, Silvia & Freni, Giuseppe, 2015. "On the Mitra–Wan forest management problem in continuous time," Journal of Economic Theory, Elsevier, vol. 157(C), pages 1001-1040.
    16. COUTURE Stephane & REYNAUD Arnaud, 2006. "Multi-stand Forest Management Under a Climatic Risk: Do time and Risk Preferences Matter?," LERNA Working Papers 06.17.210, LERNA, University of Toulouse.
    17. Nguyen, Trung Thanh & Nghiem, Nhung, 2016. "Optimal forest rotation for carbon sequestration and biodiversity conservation by farm income levels," Forest Policy and Economics, Elsevier, vol. 73(C), pages 185-194.
    18. Pena-Levano, Luis & Taheripour, Farzad & Tyner, Wally, 2020. "Cost comparison of climate change mitigation options," Conference papers 333134, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
    19. Laukkanen, Matti & Tahvonen, Olli, 2023. "Wood product differentiation in age-structured forestry," Resource and Energy Economics, Elsevier, vol. 73(C).
    20. Terry Heaps, 2014. "Convergence of Optimal Harvesting Policies to a Normal Forest," Discussion Papers dp14-01, Department of Economics, Simon Fraser University.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:195:y:2022:i:2:d:10.1007_s10957-022-02102-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.