IDEAS home Printed from https://ideas.repec.org/a/ags/joaaec/169061.html
   My bibliography  Save this article

Impacts of Climate Change on Economics of Forestry and Adaptation Strategies in the Southern United States

Author

Listed:
  • Susaeta, Andres
  • Carter, Douglas R.
  • Adams, Damian C.

Abstract

This article analyzes the impacts of different levels of forest productivity scenarios, disturbance risk, and salvageable rates resulting from climate change on the economics of loblolly pine in the southern United States. Potential adaptation strategies examined include reduction in planting density and use of slash pine instead of loblolly pine. Economic returns are most sensitive to changes in disturbance risk and productivity changes as compared with the salvage rate, planting density, or species selection. Loblolly pine with low planting density economically outperforms high-density loblolly pine. Slash pine is generally a less viable option compared with loblolly pine in most cases.

Suggested Citation

  • Susaeta, Andres & Carter, Douglas R. & Adams, Damian C., 2014. "Impacts of Climate Change on Economics of Forestry and Adaptation Strategies in the Southern United States," Journal of Agricultural and Applied Economics, Southern Agricultural Economics Association, vol. 46(2), pages 1-16, May.
  • Handle: RePEc:ags:joaaec:169061
    DOI: 10.22004/ag.econ.169061
    as

    Download full text from publisher

    File URL: https://ageconsearch.umn.edu/record/169061/files/jaae686.pdf
    Download Restriction: no

    File URL: https://libkey.io/10.22004/ag.econ.169061?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Gregory S. Amacher & Markku Ollikainen & Erkki A. Koskela, 2009. "Economics of Forest Resources," MIT Press Books, The MIT Press, edition 1, volume 1, number 0262012480, December.
    2. Dwivedi, Puneet & Bailis, Robert & Stainback, Andrew & Carter, Douglas R., 2012. "Impact of payments for carbon sequestered in wood products and avoided carbon emissions on the profitability of NIPF landowners in the US South," Ecological Economics, Elsevier, vol. 78(C), pages 63-69.
    3. Charles Sims, 2013. "Influencing Natural Forest Disturbance through Timber Harvesting: Tradeoffs among Disturbance Processes, Forest Values, and Timber Condition," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 95(4), pages 992-1008.
    4. Nick Hanley & Simanti Banerjee & Gareth D. Lennox & Paul R. Armsworth, 2012. "How should we incentivize private landowners to ‘produce’ more biodiversity?," Oxford Review of Economic Policy, Oxford University Press, vol. 28(1), pages 93-113, Spring.
    5. Goetz, Renan Ulrich & Hritonenko, Natali & Mur, Ruben & Xabadia, Àngels & Yatsenko, Yuri, 2013. "Forest management for timber and carbon sequestration in the presence of climate change: The case of Pinus Sylvestris," Ecological Economics, Elsevier, vol. 88(C), pages 86-96.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Halbritter, Andreas & Deegen, Peter & Susaeta, Andres, 2020. "An economic analysis of thinnings and rotation lengths in the presence of natural risks in even-aged forest stands," Forest Policy and Economics, Elsevier, vol. 118(C).
    2. Deegen, Peter & Matolepszy, Kai, 2015. "Economic balancing of forest management under storm risk, the case of the Ore Mountains (Germany)," Journal of Forest Economics, Elsevier, vol. 21(1), pages 1-13.
    3. Fanny Groundstroem & Sirkku Juhola, 2021. "Using systems thinking and causal loop diagrams to identify cascading climate change impacts on bioenergy supply systems," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 26(7), pages 1-48, October.
    4. Dymond, Caren Christine & Giles-Hansen, Krysta & Asante, Patrick, 2020. "The forest mitigation-adaptation nexus: Economic benefits of novel planting regimes," Forest Policy and Economics, Elsevier, vol. 113(C).
    5. Knoke, Thomas & Gosling, Elizabeth & Thom, Dominik & Chreptun, Claudia & Rammig, Anja & Seidl, Rupert, 2021. "Economic losses from natural disturbances in Norway spruce forests – A quantification using Monte-Carlo simulations," Ecological Economics, Elsevier, vol. 185(C).
    6. Susaeta, Andres & Sancewich, Brian & Adams, Damian & Moreno, Paulo C., 2019. "Ecosystem Services Production Efficiency of Longleaf Pine Under Changing Weather Conditions," Ecological Economics, Elsevier, vol. 156(C), pages 24-34.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ben Abdallah, Skander & Lasserre, Pierre, 2016. "Asset retirement with infinitely repeated alternative replacements: Harvest age and species choice in forestry," Journal of Economic Dynamics and Control, Elsevier, vol. 70(C), pages 144-164.
    2. Kangas, Johanna & Ollikainen, Markku, 2022. "A PES scheme promoting forest biodiversity and carbon sequestration," Forest Policy and Economics, Elsevier, vol. 136(C).
    3. Frans P. Vries & Nick Hanley, 2016. "Incentive-Based Policy Design for Pollution Control and Biodiversity Conservation: A Review," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 63(4), pages 687-702, April.
    4. Aleksandra Jezierska-Thöle & Roman Rudnicki & Łukasz Wiśniewski & Marta Gwiaździńska-Goraj & Mirosław Biczkowski, 2021. "The Agri-Environment-Climate Measure as an Element of the Bioeconomy in Poland—A Spatial Study," Agriculture, MDPI, vol. 11(2), pages 1-19, February.
    5. An, Hyunjin, 2017. "Forest Carbon Sequestration And Optimal Harvesting Decision Considering Southern Pine Beetle (Spb) Disturbance: A Real Option Approach," Journal of Rural Development/Nongchon-Gyeongje, Korea Rural Economic Institute, vol. 40(Special, ), December.
    6. Deegen, Peter & Matolepszy, Kai, 2015. "Economic balancing of forest management under storm risk, the case of the Ore Mountains (Germany)," Journal of Forest Economics, Elsevier, vol. 21(1), pages 1-13.
    7. Soh, Moonwon & Cho, Seong-Hoon & Yu, Edward & Boyer, Christopher & English, Burton, 2018. "Targeting Payments for Ecosystem Services Given Ecological and Economic Objectives," 2018 Annual Meeting, February 2-6, 2018, Jacksonville, Florida 266502, Southern Agricultural Economics Association.
    8. Cho, Seong-Hoon & Soh, Moonwon & English, Burton C. & Yu, T. Edward & Boyer, Christopher N., 2019. "Targeting payments for forest carbon sequestration given ecological and economic objectives," Forest Policy and Economics, Elsevier, vol. 100(C), pages 214-226.
    9. Md Sayed Iftekhar & Uwe Latacz-Lohmann, 2017. "How well do conservation auctions perform in achieving landscape-level outcomes? A comparison of auction formats and bid selection criteria," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 61(4), pages 557-575, October.
    10. Nguyen, Trung Thanh & Nghiem, Nhung, 2016. "Optimal forest rotation for carbon sequestration and biodiversity conservation by farm income levels," Forest Policy and Economics, Elsevier, vol. 73(C), pages 185-194.
    11. Khanal, Puskar N. & Grebner, Donald L. & Munn, Ian A. & Grado, Stephen C. & Grala, Robert K. & Henderson, James E., 2017. "Evaluating non-industrial private forest landowner willingness to manage for forest carbon sequestration in the southern United States," Forest Policy and Economics, Elsevier, vol. 75(C), pages 112-119.
    12. Dörschner, T. & Musshoff, O., 2015. "How do incentive-based environmental policies affect environment protection initiatives of farmers? An experimental economic analysis using the example of species richness," Ecological Economics, Elsevier, vol. 114(C), pages 90-103.
    13. Pena-Levano, Luis & Taheripour, Farzad & Tyner, Wally, 2020. "Cost comparison of climate change mitigation options," Conference papers 333134, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
    14. Morag F. Macpherson & Adam Kleczkowski & John Healey & Nick Hanley, 2015. "When to harvest? The effect of disease on optimal forest rotation," Discussion Papers in Environment and Development Economics 2015-19, University of St. Andrews, School of Geography and Sustainable Development.
    15. Xu, Ying & Amacher, Gregory S. & Sullivan, Jay, 2016. "Optimal forest management with sequential disturbances," Journal of Forest Economics, Elsevier, vol. 24(C), pages 106-122.
    16. Lawley, Chad & Yang, Wanhong, 2015. "Spatial interactions in habitat conservation: Evidence from prairie pothole easements," Journal of Environmental Economics and Management, Elsevier, vol. 71(C), pages 71-89.
    17. Rørstad, Per Kristian, 2022. "Payment for CO2 sequestration affects the Faustmann rotation period in Norway more than albedo payment does," Ecological Economics, Elsevier, vol. 199(C).
    18. Hale, Todd & Kahui, Viktoria & Farhat, Daniel, 2015. "A modified production possibility frontier for efficient forestry management under the New Zealand Emissions Trading Scheme," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 59(1), January.
    19. Sullivan, Jay & Amacher, Gregory S., 2013. "Optimal hardwood tree planting and forest reclamation policy on reclaimed surface mine lands in the Appalachian coal region," Resources Policy, Elsevier, vol. 38(1), pages 1-7.
    20. Hultkrantz, Lars & Mantalos, Panagiotis, 2018. "Hedging with trees: Tail-hedge discounting of long-term forestry returns," Journal of Forest Economics, Elsevier, vol. 30(C), pages 52-57.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ags:joaaec:169061. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: AgEcon Search (email available below). General contact details of provider: https://edirc.repec.org/data/saeaaea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.