IDEAS home Printed from https://ideas.repec.org/a/spr/joptap/v163y2014i3d10.1007_s10957-014-0540-8.html
   My bibliography  Save this article

Proximal Point Algorithms for Convex Multi-criteria Optimization with Applications to Supply Chain Risk Management

Author

Listed:
  • Shao-Jian Qu

    (Harbin Institute of Technology
    National University of Singapore)

  • Mark Goh

    (National University of Singapore
    National University of Singapore)

  • Robert Souza

    (National University of Singapore)

  • Tie-Nan Wang

    (Harbin Institute of Technology)

Abstract

We study a class of convex multi-criteria optimization problems with convex objective functions under linear constraints. We use a non-scalarization method—namely, two implementable proximal point algorithms—to obtain the Pareto optimum under multi-criteria optimization. We show that the algorithms are globally convergent. We apply the algorithms to a supply chain risk management problem under multi-criteria considerations.

Suggested Citation

  • Shao-Jian Qu & Mark Goh & Robert Souza & Tie-Nan Wang, 2014. "Proximal Point Algorithms for Convex Multi-criteria Optimization with Applications to Supply Chain Risk Management," Journal of Optimization Theory and Applications, Springer, vol. 163(3), pages 949-956, December.
  • Handle: RePEc:spr:joptap:v:163:y:2014:i:3:d:10.1007_s10957-014-0540-8
    DOI: 10.1007/s10957-014-0540-8
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10957-014-0540-8
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10957-014-0540-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Villacorta, Kely D.V. & Oliveira, P. Roberto, 2011. "An interior proximal method in vector optimization," European Journal of Operational Research, Elsevier, vol. 214(3), pages 485-492, November.
    2. Sawik, Tadeusz, 2011. "Selection of supply portfolio under disruption risks," Omega, Elsevier, vol. 39(2), pages 194-208, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nishat Alam Choudhary & Shalabh Singh & Tobias Schoenherr & M. Ramkumar, 2023. "Risk assessment in supply chains: a state-of-the-art review of methodologies and their applications," Annals of Operations Research, Springer, vol. 322(2), pages 565-607, March.
    2. Qu, Shaojian & Ji, Ying & Jiang, Jianlin & Zhang, Qingpu, 2017. "Nonmonotone gradient methods for vector optimization with a portfolio optimization application," European Journal of Operational Research, Elsevier, vol. 263(2), pages 356-366.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Yongjian & Zhen, Xueping & Qi, Xiangtong & Cai, Gangshu (George), 2016. "Penalty and financial assistance in a supply chain with supply disruption," Omega, Elsevier, vol. 61(C), pages 167-181.
    2. Erik Alex Papa Quiroz & Nancy Baygorrea Cusihuallpa & Nelson Maculan, 2020. "Inexact Proximal Point Methods for Multiobjective Quasiconvex Minimization on Hadamard Manifolds," Journal of Optimization Theory and Applications, Springer, vol. 186(3), pages 879-898, September.
    3. Faiza Hamdi & Ahmed Ghorbel & Faouzi Masmoudi & Lionel Dupont, 2018. "Optimization of a supply portfolio in the context of supply chain risk management: literature review," Journal of Intelligent Manufacturing, Springer, vol. 29(4), pages 763-788, April.
    4. Sawik, Tadeusz, 2022. "Stochastic optimization of supply chain resilience under ripple effect: A COVID-19 pandemic related study," Omega, Elsevier, vol. 109(C).
    5. Aqlan, Faisal & Lam, Sarah S., 2015. "A fuzzy-based integrated framework for supply chain risk assessment," International Journal of Production Economics, Elsevier, vol. 161(C), pages 54-63.
    6. Durbach, Ian N. & Stewart, Theodor J., 2012. "A comparison of simplified value function approaches for treating uncertainty in multi-criteria decision analysis," Omega, Elsevier, vol. 40(4), pages 456-464.
    7. Gonçalves, M.L.N. & Lima, F.S. & Prudente, L.F., 2022. "A study of Liu-Storey conjugate gradient methods for vector optimization," Applied Mathematics and Computation, Elsevier, vol. 425(C).
    8. Hosseininasab, Amin & Ahmadi, Abbas, 2015. "Selecting a supplier portfolio with value, development, and risk consideration," European Journal of Operational Research, Elsevier, vol. 245(1), pages 146-156.
    9. Qu, Shaojian & Ji, Ying & Jiang, Jianlin & Zhang, Qingpu, 2017. "Nonmonotone gradient methods for vector optimization with a portfolio optimization application," European Journal of Operational Research, Elsevier, vol. 263(2), pages 356-366.
    10. Md. Tarek Chowdhury & Aditi Sarkar & Sanjoy Kumar Paul & Md. Abdul Moktadir, 2022. "A case study on strategies to deal with the impacts of COVID-19 pandemic in the food and beverage industry," Operations Management Research, Springer, vol. 15(1), pages 166-178, June.
    11. Heckmann, Iris & Comes, Tina & Nickel, Stefan, 2015. "A critical review on supply chain risk – Definition, measure and modeling," Omega, Elsevier, vol. 52(C), pages 119-132.
    12. Fattahi, Mohammad, 2021. "Resilient procurement planning for supply chains: A case study for sourcing a critical mineral material," Resources Policy, Elsevier, vol. 74(C).
    13. Jaroslaw Milczarek & Piotr Cyplik & Sebastian Wieczerniak, 2018. "Using Total Cost Of Ownership As A Method For Identification Of Internal Problems In Purchase Area – Case Study," Business Logistics in Modern Management, Josip Juraj Strossmayer University of Osijek, Faculty of Economics, Croatia, vol. 18, pages 205-223.
    14. Fahimnia, Behnam & Jabbarzadeh, Armin, 2016. "Marrying supply chain sustainability and resilience: A match made in heaven," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 91(C), pages 306-324.
    15. Chih-Hung Hsu & Ming-Ge Li & Ting-Yi Zhang & An-Yuan Chang & Shu-Zhen Shangguan & Wan-Ling Liu, 2022. "Deploying Big Data Enablers to Strengthen Supply Chain Resilience to Mitigate Sustainable Risks Based on Integrated HOQ-MCDM Framework," Mathematics, MDPI, vol. 10(8), pages 1-35, April.
    16. Schmitt, Amanda J. & Sun, Siyuan Anthony & Snyder, Lawrence V. & Shen, Zuo-Jun Max, 2015. "Centralization versus decentralization: Risk pooling, risk diversification, and supply chain disruptions," Omega, Elsevier, vol. 52(C), pages 201-212.
    17. G. C. Bento & J. X. Cruz Neto & L. V. Meireles & A. Soubeyran, 2022. "Pareto solutions as limits of collective traps: an inexact multiobjective proximal point algorithm," Annals of Operations Research, Springer, vol. 316(2), pages 1425-1443, September.
    18. Liu, Ming & Liu, Zhongzheng & Chu, Feng & Dolgui, Alexandre & Chu, Chengbin & Zheng, Feifeng, 2022. "An optimization approach for multi-echelon supply chain viability with disruption risk minimization," Omega, Elsevier, vol. 112(C).
    19. Tadeusz Sawik, 2018. "Selection of a dynamic supply portfolio under delay and disruption risks," International Journal of Production Research, Taylor & Francis Journals, vol. 56(1-2), pages 760-782, January.
    20. Mohammaddust, Faeghe & Rezapour, Shabnam & Farahani, Reza Zanjirani & Mofidfar, Mohammad & Hill, Alex, 2017. "Developing lean and responsive supply chains: A robust model for alternative risk mitigation strategies in supply chain designs," International Journal of Production Economics, Elsevier, vol. 183(PC), pages 632-653.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:163:y:2014:i:3:d:10.1007_s10957-014-0540-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.