IDEAS home Printed from https://ideas.repec.org/p/hal/journl/hal-03680291.html
   My bibliography  Save this paper

Pareto solutions as limits of collective traps: an inexact multiobjective proximal point algorithm

Author

Listed:
  • Glaydston Carvalho Bento

    (UFG - Universidade Federal de Goiás [Goiânia])

  • João Xavier da Cruz Neto

    (UFPI - Universidade Federal do Piauí)

  • L. Meireles

    (IFGOIANO - Instituto Federal Goiano = Goiano Federal Institute)

  • Antoine Soubeyran

    (AMSE - Aix-Marseille Sciences Economiques - EHESS - École des hautes études en sciences sociales - AMU - Aix Marseille Université - ECM - École Centrale de Marseille - CNRS - Centre National de la Recherche Scientifique)

Abstract

In this paper we introduce a definition of approximate Pareto efficient solution as well as a necessary condition for such solutions in the multiobjective setting on Riemannian manifolds. We also propose an inexact proximal point method for nonsmooth multiobjective optimization in the Riemannian context by using the notion of approximate solution. The main convergence result ensures that each cluster point (if any) of any sequence generated by the method is a Pareto critical point. Furthermore, when the problem is convex on a Hadamard manifold, full convergence of the method for a weak Pareto efficient solution is obtained. As an application, we show how a Pareto critical point can be reached as a limit of traps in the context of the variational rationality approach of stay and change human dynamics.

Suggested Citation

  • Glaydston Carvalho Bento & João Xavier da Cruz Neto & L. Meireles & Antoine Soubeyran, 2022. "Pareto solutions as limits of collective traps: an inexact multiobjective proximal point algorithm," Post-Print hal-03680291, HAL.
  • Handle: RePEc:hal:journl:hal-03680291
    DOI: 10.1007/s10479-022-04719-y
    Note: View the original document on HAL open archive server: https://amu.hal.science/hal-03680291
    as

    Download full text from publisher

    File URL: https://amu.hal.science/hal-03680291/document
    Download Restriction: no

    File URL: https://libkey.io/10.1007/s10479-022-04719-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. G. Bento & J. Cruz Neto & G. López & Antoine Soubeyran & J. Souza, 2018. "The Proximal Point Method for Locally Lipschitz Functions in Multiobjective Optimization with Application to the Compromise Problem," Post-Print hal-01985333, HAL.
    2. L. C. Ceng & B. S. Mordukhovich & J. C. Yao, 2010. "Hybrid Approximate Proximal Method with Auxiliary Variational Inequality for Vector Optimization," Journal of Optimization Theory and Applications, Springer, vol. 146(2), pages 267-303, August.
    3. Glaydston de C. Bento & João Xavier Cruz Neto & Lucas V. Meireles, 2018. "Proximal Point Method for Locally Lipschitz Functions in Multiobjective Optimization of Hadamard Manifolds," Journal of Optimization Theory and Applications, Springer, vol. 179(1), pages 37-52, October.
    4. X. X. Huang & X. Q. Yang, 2004. "Duality for Multiobjective Optimization via Nonlinear Lagrangian Functions," Journal of Optimization Theory and Applications, Springer, vol. 120(1), pages 111-127, January.
    5. Ronaldo Gregório & Paulo Oliveira, 2011. "A logarithmic-quadratic proximal point scalarization method for multiobjective programming," Journal of Global Optimization, Springer, vol. 49(2), pages 281-291, February.
    6. Glaydston de Carvalho Bento & Orizon Pereira Ferreira & Antoine Soubeyran & Valdinês Leite de Sousa Júnior, 2018. "Inexact Multi-Objective Local Search Proximal Algorithms: Application to Group Dynamic and Distributive Justice Problems," Journal of Optimization Theory and Applications, Springer, vol. 177(1), pages 181-200, April.
    7. Villacorta, Kely D.V. & Oliveira, P. Roberto, 2011. "An interior proximal method in vector optimization," European Journal of Operational Research, Elsevier, vol. 214(3), pages 485-492, November.
    8. G. C. Bento & O. P. Ferreira & P. R. Oliveira, 2012. "Unconstrained Steepest Descent Method for Multicriteria Optimization on Riemannian Manifolds," Journal of Optimization Theory and Applications, Springer, vol. 154(1), pages 88-107, July.
    9. Erik Alex Papa Quiroz & Nancy Baygorrea Cusihuallpa & Nelson Maculan, 2020. "Inexact Proximal Point Methods for Multiobjective Quasiconvex Minimization on Hadamard Manifolds," Journal of Optimization Theory and Applications, Springer, vol. 186(3), pages 879-898, September.
    10. Ceng, Lu-Chuan & Yao, Jen-Chih, 2007. "Approximate proximal methods in vector optimization," European Journal of Operational Research, Elsevier, vol. 183(1), pages 1-19, November.
    11. G. C. Bento & J. X. Cruz Neto, 2013. "A Subgradient Method for Multiobjective Optimization on Riemannian Manifolds," Journal of Optimization Theory and Applications, Springer, vol. 159(1), pages 125-137, October.
    12. H. Apolinário & E. Papa Quiroz & P. Oliveira, 2016. "A scalarization proximal point method for quasiconvex multiobjective minimization," Journal of Global Optimization, Springer, vol. 64(1), pages 79-96, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Erik Alex Papa Quiroz & Nancy Baygorrea Cusihuallpa & Nelson Maculan, 2020. "Inexact Proximal Point Methods for Multiobjective Quasiconvex Minimization on Hadamard Manifolds," Journal of Optimization Theory and Applications, Springer, vol. 186(3), pages 879-898, September.
    2. Glaydston Carvalho Bento & Sandro Dimy Barbosa Bitar & João Xavier Cruz Neto & Antoine Soubeyran & João Carlos Oliveira Souza, 2020. "A proximal point method for difference of convex functions in multi-objective optimization with application to group dynamic problems," Computational Optimization and Applications, Springer, vol. 75(1), pages 263-290, January.
    3. G. Bento & J. Cruz Neto & G. López & Antoine Soubeyran & J. Souza, 2018. "The Proximal Point Method for Locally Lipschitz Functions in Multiobjective Optimization with Application to the Compromise Problem," Post-Print hal-01985333, HAL.
    4. Alfredo N. Iusem & Jefferson G. Melo & Ray G. Serra, 2021. "A Strongly Convergent Proximal Point Method for Vector Optimization," Journal of Optimization Theory and Applications, Springer, vol. 190(1), pages 183-200, July.
    5. Xiaopeng Zhao & Jen-Chih Yao, 2022. "Linear convergence of a nonmonotone projected gradient method for multiobjective optimization," Journal of Global Optimization, Springer, vol. 82(3), pages 577-594, March.
    6. Glaydston de C. Bento & João Xavier Cruz Neto & Lucas V. Meireles, 2018. "Proximal Point Method for Locally Lipschitz Functions in Multiobjective Optimization of Hadamard Manifolds," Journal of Optimization Theory and Applications, Springer, vol. 179(1), pages 37-52, October.
    7. João Carlos de O. Souza, 2018. "Proximal Point Methods for Lipschitz Functions on Hadamard Manifolds: Scalar and Vectorial Cases," Journal of Optimization Theory and Applications, Springer, vol. 179(3), pages 745-760, December.
    8. Gonçalves, M.L.N. & Lima, F.S. & Prudente, L.F., 2022. "A study of Liu-Storey conjugate gradient methods for vector optimization," Applied Mathematics and Computation, Elsevier, vol. 425(C).
    9. Bento, G.C. & Cruz Neto, J.X. & Oliveira, P.R. & Soubeyran, A., 2014. "The self regulation problem as an inexact steepest descent method for multicriteria optimization," European Journal of Operational Research, Elsevier, vol. 235(3), pages 494-502.
    10. Erik Alex Papa Quiroz & Hellena Christina Fernandes Apolinário & Kely Diana Villacorta & Paulo Roberto Oliveira, 2019. "A Linear Scalarization Proximal Point Method for Quasiconvex Multiobjective Minimization," Journal of Optimization Theory and Applications, Springer, vol. 183(3), pages 1028-1052, December.
    11. Orizon P. Ferreira & Mauricio S. Louzeiro & Leandro F. Prudente, 2020. "Iteration-Complexity and Asymptotic Analysis of Steepest Descent Method for Multiobjective Optimization on Riemannian Manifolds," Journal of Optimization Theory and Applications, Springer, vol. 184(2), pages 507-533, February.
    12. H. Apolinário & E. Papa Quiroz & P. Oliveira, 2016. "A scalarization proximal point method for quasiconvex multiobjective minimization," Journal of Global Optimization, Springer, vol. 64(1), pages 79-96, January.
    13. Rocha, Rogério Azevedo & Oliveira, Paulo Roberto & Gregório, Ronaldo Malheiros & Souza, Michael, 2016. "Logarithmic quasi-distance proximal point scalarization method for multi-objective programming," Applied Mathematics and Computation, Elsevier, vol. 273(C), pages 856-867.
    14. N. Eslami & B. Najafi & S. M. Vaezpour, 2023. "A Trust Region Method for Solving Multicriteria Optimization Problems on Riemannian Manifolds," Journal of Optimization Theory and Applications, Springer, vol. 196(1), pages 212-239, January.
    15. Xiaopeng Zhao & Markus A. Köbis & Yonghong Yao & Jen-Chih Yao, 2021. "A Projected Subgradient Method for Nondifferentiable Quasiconvex Multiobjective Optimization Problems," Journal of Optimization Theory and Applications, Springer, vol. 190(1), pages 82-107, July.
    16. Rogério A. Rocha & Paulo R. Oliveira & Ronaldo M. Gregório & Michael Souza, 2016. "A Proximal Point Algorithm with Quasi-distance in Multi-objective Optimization," Journal of Optimization Theory and Applications, Springer, vol. 171(3), pages 964-979, December.
    17. Brito, A.S. & Cruz Neto, J.X. & Santos, P.S.M. & Souza, S.S., 2017. "A relaxed projection method for solving multiobjective optimization problems," European Journal of Operational Research, Elsevier, vol. 256(1), pages 17-23.
    18. M. L. N. Gonçalves & L. F. Prudente, 2020. "On the extension of the Hager–Zhang conjugate gradient method for vector optimization," Computational Optimization and Applications, Springer, vol. 76(3), pages 889-916, July.
    19. E. A. Papa Quiroz & S. Cruzado, 2022. "An inexact scalarization proximal point method for multiobjective quasiconvex minimization," Annals of Operations Research, Springer, vol. 316(2), pages 1445-1470, September.
    20. Thai Chuong, 2013. "Newton-like methods for efficient solutions in vector optimization," Computational Optimization and Applications, Springer, vol. 54(3), pages 495-516, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:journl:hal-03680291. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.