IDEAS home Printed from https://ideas.repec.org/a/spr/joinma/v31y2020i6d10.1007_s10845-019-01531-7.html
   My bibliography  Save this article

Machine learning applied in production planning and control: a state-of-the-art in the era of industry 4.0

Author

Listed:
  • Juan Pablo Usuga Cadavid

    (Arts et Métiers ParisTech)

  • Samir Lamouri

    (Arts et Métiers ParisTech)

  • Bernard Grabot

    (INP/ENIT)

  • Robert Pellerin

    (Polytechnique de Montreal)

  • Arnaud Fortin

    (iFAKT France SAS)

Abstract

Because of their cross-functional nature in the company, enhancing Production Planning and Control (PPC) functions can lead to a global improvement of manufacturing systems. With the advent of the Industry 4.0 (I4.0), copious availability of data, high-computing power and large storage capacity have made of Machine Learning (ML) approaches an appealing solution to tackle manufacturing challenges. As such, this paper presents a state-of-the-art of ML-aided PPC (ML-PPC) done through a systematic literature review analyzing 93 recent research application articles. This study has two main objectives: contribute to the definition of a methodology to implement ML-PPC and propose a mapping to classify the scientific literature to identify further research perspectives. To achieve the first objective, ML techniques, tools, activities, and data sources which are required to implement a ML-PPC are reviewed. The second objective is developed through the analysis of the use cases and the addressed characteristics of the I4.0. Results suggest that 75% of the possible research domains in ML-PPC are barely explored or not addressed at all. This lack of research originates from two possible causes: firstly, scientific literature rarely considers customer, environmental, and human-in-the-loop aspects when linking ML to PPC. Secondly, recent applications seldom couple PPC to logistics as well as to design of products and processes. Finally, two key pitfalls are identified in the implementation of ML-PPC models: the complexity of using Internet of Things technologies to collect data and the difficulty of updating the ML model to adapt it to the manufacturing system changes.

Suggested Citation

  • Juan Pablo Usuga Cadavid & Samir Lamouri & Bernard Grabot & Robert Pellerin & Arnaud Fortin, 2020. "Machine learning applied in production planning and control: a state-of-the-art in the era of industry 4.0," Journal of Intelligent Manufacturing, Springer, vol. 31(6), pages 1531-1558, August.
  • Handle: RePEc:spr:joinma:v:31:y:2020:i:6:d:10.1007_s10845-019-01531-7
    DOI: 10.1007/s10845-019-01531-7
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10845-019-01531-7
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10845-019-01531-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Alexandre Moeuf & Robert Pellerin & Samir Lamouri & Simon Tamayo-Giraldo & Rodolphe Barbaray, 2018. "The industrial management of SMEs in the era of Industry 4.0," International Journal of Production Research, Taylor & Francis Journals, vol. 56(3), pages 1118-1136, February.
    2. Yifei Tong & Jingwei Li & Shai Li & Dongbo Li, 2016. "Research on Energy-Saving Production Scheduling Based on a Clustering Algorithm for a Forging Enterprise," Sustainability, MDPI, vol. 8(2), pages 1-17, February.
    3. Li, Xueping & Wang, Jiao & Sawhney, Rapinder, 2012. "Reinforcement learning for joint pricing, lead-time and scheduling decisions in make-to-order systems," European Journal of Operational Research, Elsevier, vol. 221(1), pages 99-109.
    4. Zoran Jurkovic & Goran Cukor & Miran Brezocnik & Tomislav Brajkovic, 2018. "A comparison of machine learning methods for cutting parameters prediction in high speed turning process," Journal of Intelligent Manufacturing, Springer, vol. 29(8), pages 1683-1693, December.
    5. Nikolai Stein & Jan Meller & Christoph M. Flath, 2018. "Big data on the shop-floor: sensor-based decision-support for manual processes," Journal of Business Economics, Springer, vol. 88(5), pages 593-616, July.
    6. Hosseini, Seyedmohsen & Ivanov, Dmitry & Dolgui, Alexandre, 2019. "Review of quantitative methods for supply chain resilience analysis," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 125(C), pages 285-307.
    7. Zhang, Zhicong & Zheng, Li & Hou, Forest & Li, Na, 2011. "Semiconductor final test scheduling with Sarsa([lambda], k) algorithm," European Journal of Operational Research, Elsevier, vol. 215(2), pages 446-458, December.
    8. Jens Heger & Jürgen Branke & Torsten Hildebrandt & Bernd Scholz-Reiter, 2016. "Dynamic adjustment of dispatching rule parameters in flow shops with sequence-dependent set-up times," International Journal of Production Research, Taylor & Francis Journals, vol. 54(22), pages 6812-6824, November.
    9. Fotuhi, Fateme & Huynh, Nathan & Vidal, Jose M. & Xie, Yuanchang, 2013. "Modeling yard crane operators as reinforcement learning agents," Research in Transportation Economics, Elsevier, vol. 42(1), pages 3-12.
    10. Chuang Wang & Pingyu Jiang, 2018. "Manifold learning based rescheduling decision mechanism for recessive disturbances in RFID-driven job shops," Journal of Intelligent Manufacturing, Springer, vol. 29(7), pages 1485-1500, October.
    11. Chuang Wang & Pingyu Jiang, 2019. "Deep neural networks based order completion time prediction by using real-time job shop RFID data," Journal of Intelligent Manufacturing, Springer, vol. 30(3), pages 1303-1318, March.
    12. Hosseini, Seyedmohsen & Barker, Kash, 2016. "A Bayesian network model for resilience-based supplier selection," International Journal of Production Economics, Elsevier, vol. 180(C), pages 68-87.
    13. Andrew Kusiak, 2017. "Smart manufacturing must embrace big data," Nature, Nature, vol. 544(7648), pages 23-25, April.
    14. Hao-Xiang Wang & Hong-Sen Yan, 2016. "An interoperable adaptive scheduling strategy for knowledgeable manufacturing based on SMGWQ-learning," Journal of Intelligent Manufacturing, Springer, vol. 27(5), pages 1085-1095, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mateo Ramos-Merino & Juan M. Santos-Gago & Luis M. Álvarez-Sabucedo, 2021. "Fuzzy traceability: using domain knowledge information to estimate the followed route of process instances in non-exhaustive monitoring environments," Journal of Intelligent Manufacturing, Springer, vol. 32(8), pages 2235-2255, December.
    2. Behice Meltem Kayhan & Gokalp Yildiz, 2023. "Reinforcement learning applications to machine scheduling problems: a comprehensive literature review," Journal of Intelligent Manufacturing, Springer, vol. 34(3), pages 905-929, March.
    3. Olumide Emmanuel Oluyisola & Swapnil Bhalla & Fabio Sgarbossa & Jan Ola Strandhagen, 2022. "Designing and developing smart production planning and control systems in the industry 4.0 era: a methodology and case study," Journal of Intelligent Manufacturing, Springer, vol. 33(1), pages 311-332, January.
    4. Lemstra, Mary Anny Moraes Silva & de Mesquita, Marco Aurélio, 2023. "Industry 4.0: a tertiary literature review," Technological Forecasting and Social Change, Elsevier, vol. 186(PB).
    5. Tan Ching Ng & Sie Yee Lau & Morteza Ghobakhloo & Masood Fathi & Meng Suan Liang, 2022. "The Application of Industry 4.0 Technological Constituents for Sustainable Manufacturing: A Content-Centric Review," Sustainability, MDPI, vol. 14(7), pages 1-21, April.
    6. SungKu Kang & Ran Jin & Xinwei Deng & Ron S. Kenett, 2023. "Challenges of modeling and analysis in cybermanufacturing: a review from a machine learning and computation perspective," Journal of Intelligent Manufacturing, Springer, vol. 34(2), pages 415-428, February.
    7. Rusindiyanto, 2023. "Production Planning and Control of Flooring Using Aggregate Planning Method," Technium, Technium Science, vol. 16(1), pages 397-404.
    8. Mansoureh Maadi & Hadi Akbarzadeh Khorshidi & Uwe Aickelin, 2021. "A Review on Human–AI Interaction in Machine Learning and Insights for Medical Applications," IJERPH, MDPI, vol. 18(4), pages 1-27, February.
    9. Alisha Lakra & Shubhkirti Gupta & Ravi Ranjan & Sushanta Tripathy & Deepak Singhal, 2022. "The Significance of Machine Learning in the Manufacturing Sector: An ISM Approach," Logistics, MDPI, vol. 6(4), pages 1-15, October.
    10. Masoud Zafarzadeh & Magnus Wiktorsson & Jannicke Baalsrud Hauge, 2021. "A Systematic Review on Technologies for Data-Driven Production Logistics: Their Role from a Holistic and Value Creation Perspective," Logistics, MDPI, vol. 5(2), pages 1-32, April.
    11. Sebastian Mayer & Tobias Classen & Christian Endisch, 2021. "Modular production control using deep reinforcement learning: proximal policy optimization," Journal of Intelligent Manufacturing, Springer, vol. 32(8), pages 2335-2351, December.
    12. Tan, Daniel & Suvarna, Manu & Shee Tan, Yee & Li, Jie & Wang, Xiaonan, 2021. "A three-step machine learning framework for energy profiling, activity state prediction and production estimation in smart process manufacturing," Applied Energy, Elsevier, vol. 291(C).
    13. Carlos A. Escobar & Megan E. McGovern & Ruben Morales-Menendez, 2021. "Quality 4.0: a review of big data challenges in manufacturing," Journal of Intelligent Manufacturing, Springer, vol. 32(8), pages 2319-2334, December.
    14. Chenxi Yuan & Guoyan Li & Sagar Kamarthi & Xiaoning Jin & Mohsen Moghaddam, 2022. "Trends in intelligent manufacturing research: a keyword co-occurrence network based review," Journal of Intelligent Manufacturing, Springer, vol. 33(2), pages 425-439, February.
    15. Kyu Tae Park & Jinho Yang & Sang Do Noh, 2021. "VREDI: virtual representation for a digital twin application in a work-center-level asset administration shell," Journal of Intelligent Manufacturing, Springer, vol. 32(2), pages 501-544, February.
    16. Christian Meske & Enrico Bunde, 2023. "Design Principles for User Interfaces in AI-Based Decision Support Systems: The Case of Explainable Hate Speech Detection," Information Systems Frontiers, Springer, vol. 25(2), pages 743-773, April.
    17. Shaohua Huang & Yu Guo & Nengjun Yang & Shanshan Zha & Daoyuan Liu & Weiguang Fang, 2021. "A weighted fuzzy C-means clustering method with density peak for anomaly detection in IoT-enabled manufacturing process," Journal of Intelligent Manufacturing, Springer, vol. 32(7), pages 1845-1861, October.
    18. Guo, Daqiang & Li, Mingxing & Lyu, Zhongyuan & Kang, Kai & Wu, Wei & Zhong, Ray Y. & Huang, George Q., 2021. "Synchroperation in industry 4.0 manufacturing," International Journal of Production Economics, Elsevier, vol. 238(C).
    19. Xiaohan Li & Chenwei Ma & Yang Lv, 2022. "Environmental Cost Control of Manufacturing Enterprises via Machine Learning under Data Warehouse," Sustainability, MDPI, vol. 14(18), pages 1-21, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Olumide Emmanuel Oluyisola & Swapnil Bhalla & Fabio Sgarbossa & Jan Ola Strandhagen, 2022. "Designing and developing smart production planning and control systems in the industry 4.0 era: a methodology and case study," Journal of Intelligent Manufacturing, Springer, vol. 33(1), pages 311-332, January.
    2. Antonio Zavala-Alcívar & María-José Verdecho & Juan-José Alfaro-Saiz, 2020. "A Conceptual Framework to Manage Resilience and Increase Sustainability in the Supply Chain," Sustainability, MDPI, vol. 12(16), pages 1-38, August.
    3. Ahmadi, Somayeh & Saboohi, Yadollah & Vakili, Ali, 2021. "Frameworks, quantitative indicators, characters, and modeling approaches to analysis of energy system resilience: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    4. Guo, Yan & Yu, Xinning & Zhou, Caifeng & Lyu, Gaoyan, 2021. "Government subsidies for preventing supply disruption when the supplier has an outside option under competition," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 147(C).
    5. Seyedmohsen Hosseini & Dmitry Ivanov, 2022. "A new resilience measure for supply networks with the ripple effect considerations: a Bayesian network approach," Annals of Operations Research, Springer, vol. 319(1), pages 581-607, December.
    6. Li, Yuhong & Zobel, Christopher W. & Seref, Onur & Chatfield, Dean, 2020. "Network characteristics and supply chain resilience under conditions of risk propagation," International Journal of Production Economics, Elsevier, vol. 223(C).
    7. Nocera, Fabrizio & Contento, Alessandro & Gardoni, Paolo, 2024. "Risk analysis of supply chains: The role of supporting structures and infrastructure," Reliability Engineering and System Safety, Elsevier, vol. 241(C).
    8. Zhao, Nanyang & Hong, Jiangtao & Lau, Kwok Hung, 2023. "Impact of supply chain digitalization on supply chain resilience and performance: A multi-mediation model," International Journal of Production Economics, Elsevier, vol. 259(C).
    9. Niamat Ullah Ibne Hossain & Farjana Nur & Raed Jaradat & Seyedmohsen Hosseini & Mohammad Marufuzzaman & Stephen M. Puryear & Randy K. Buchanan, 2019. "Metrics for Assessing Overall Performance of Inland Waterway Ports: A Bayesian Network Based Approach," Complexity, Hindawi, vol. 2019, pages 1-17, May.
    10. Hosseini, Seyedmohsen & Morshedlou, Nazanin & Ivanov, Dmitry & Sarder, M.D. & Barker, Kash & Khaled, Abdullah Al, 2019. "Resilient supplier selection and optimal order allocation under disruption risks," International Journal of Production Economics, Elsevier, vol. 213(C), pages 124-137.
    11. Yan, Yimo & Chow, Andy H.F. & Ho, Chin Pang & Kuo, Yong-Hong & Wu, Qihao & Ying, Chengshuo, 2022. "Reinforcement learning for logistics and supply chain management: Methodologies, state of the art, and future opportunities," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 162(C).
    12. Behice Meltem Kayhan & Gokalp Yildiz, 2023. "Reinforcement learning applications to machine scheduling problems: a comprehensive literature review," Journal of Intelligent Manufacturing, Springer, vol. 34(3), pages 905-929, March.
    13. Mohammed, Ahmed & Lopes de Sousa Jabbour, Ana Beatriz & Koh, Lenny & Hubbard, Nicolas & Chiappetta Jabbour, Charbel Jose & Al Ahmed, Teejan, 2022. "The sourcing decision-making process in the era of digitalization: A new quantitative methodology," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 168(C).
    14. Andreas Kuhnle & Jan-Philipp Kaiser & Felix Theiß & Nicole Stricker & Gisela Lanza, 2021. "Designing an adaptive production control system using reinforcement learning," Journal of Intelligent Manufacturing, Springer, vol. 32(3), pages 855-876, March.
    15. Islam, Samiul & Amin, Saman Hassanzadeh & Wardley, Leslie J., 2021. "Machine learning and optimization models for supplier selection and order allocation planning," International Journal of Production Economics, Elsevier, vol. 242(C).
    16. Balezentis, Tomas & Zickiene, Agne & Volkov, Artiom & Streimikiene, Dalia & Morkunas, Mangirdas & Dabkiene, Vida & Ribasauskiene, Erika, 2023. "Measures for the viable agri-food supply chains: A multi-criteria approach," Journal of Business Research, Elsevier, vol. 155(PA).
    17. Zhu, Chunli & Wu, Jianping & Liu, Mingyu & Luan, Jianlin & Li, Tingting & Hu, Kezhen, 2020. "Cyber-physical resilience modelling and assessment of urban roadway system interrupted by rainfall," Reliability Engineering and System Safety, Elsevier, vol. 204(C).
    18. Aghajani, Mojtaba & Ali Torabi, S. & Altay, Nezih, 2023. "Resilient relief supply planning using an integrated procurement-warehousing model under supply disruption," Omega, Elsevier, vol. 118(C).
    19. Kaur, Harpreet & Prakash Singh, Surya, 2021. "Multi-stage hybrid model for supplier selection and order allocation considering disruption risks and disruptive technologies," International Journal of Production Economics, Elsevier, vol. 231(C).
    20. Sony, Michael & Naik, Subhash, 2020. "Industry 4.0 integration with socio-technical systems theory: A systematic review and proposed theoretical model," Technology in Society, Elsevier, vol. 61(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joinma:v:31:y:2020:i:6:d:10.1007_s10845-019-01531-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.