IDEAS home Printed from https://ideas.repec.org/a/spr/ijsaem/v13y2022i4d10.1007_s13198-022-01618-0.html
   My bibliography  Save this article

A goal programming approach for multi-objective linear fractional programming problem with LR possibilistic variables

Author

Listed:
  • Hamiden Abd El- Wahed Khalifa

    (Cairo University
    Qassim University)

  • Pavan Kumar

    (VIT Bhopal University)

Abstract

This article presents a fuzzy multi-objective linear fractional programming (FMOLFP) problem. The goal programming (GP) approach is used to solve the proposed problem. The $$LR$$ LR (Left and Right) possibilistic variables are addressed to the suggested the fuzzy multi-objective linear fractional programming (FMOLFP) model to deal the uncertainty of the model parameters. An auxiliary model in which objective function is the distance between the $$p -$$ p - ary $$\alpha -$$ α - optimal value restriction and $$p -$$ p - ary fuzzy objective function is proposed. In the last, one solved example is given to illustrate and to support the validity of the suggested approach.

Suggested Citation

  • Hamiden Abd El- Wahed Khalifa & Pavan Kumar, 2022. "A goal programming approach for multi-objective linear fractional programming problem with LR possibilistic variables," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 13(4), pages 2053-2061, August.
  • Handle: RePEc:spr:ijsaem:v:13:y:2022:i:4:d:10.1007_s13198-022-01618-0
    DOI: 10.1007/s13198-022-01618-0
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s13198-022-01618-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s13198-022-01618-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. R. E. Bellman & L. A. Zadeh, 1970. "Decision-Making in a Fuzzy Environment," Management Science, INFORMS, vol. 17(4), pages 141-164, December.
    2. Nykowski, Ireneusz & Zolkiewski, Zbigniew, 1985. "A compromise procedure for the multiple objective linear fractional programming problem," European Journal of Operational Research, Elsevier, vol. 19(1), pages 91-97, January.
    3. Pavan Kumar & Debashis Dutta, 2015. "Multi-objective linear fractional inventory model of multi-products with price-dependant demand rate in fuzzy environment," International Journal of Mathematics in Operational Research, Inderscience Enterprises Ltd, vol. 7(5), pages 547-565.
    4. Harold P. Benson, 1985. "Note---Finding Certain Weakly-Efficient Vertices in Multiple Objective Linear Fractional Programming," Management Science, INFORMS, vol. 31(2), pages 240-248, February.
    5. D. Dutta & Pavan Kumar, 2015. "Application of fuzzy goal programming approach to multi-objective linear fractional inventory model," International Journal of Systems Science, Taylor & Francis Journals, vol. 46(12), pages 2269-2278, September.
    6. Jonathan S. H. Kornbluth & Ralph E. Steuer, 1981. "Multiple Objective Linear Fractional Programming," Management Science, INFORMS, vol. 27(9), pages 1024-1039, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chen Bai & Lixiao Yao & Cheng Wang & Yongxuan Zhao & Weien Peng, 2022. "Optimization of Water and Energy Spatial Patterns in the Cascade Pump Station Irrigation District," Sustainability, MDPI, vol. 14(9), pages 1-17, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sakawa, Masatoshi & Kato, Kosuke, 1998. "An interactive fuzzy satisficing method for structured multiobjective linear fractional programs with fuzzy numbers," European Journal of Operational Research, Elsevier, vol. 107(3), pages 575-589, June.
    2. Ahlatcioglu, Mehmet & Tiryaki, Fatma, 2007. "Interactive fuzzy programming for decentralized two-level linear fractional programming (DTLLFP) problems," Omega, Elsevier, vol. 35(4), pages 432-450, August.
    3. C. Singh & M.A. Hanson, 1991. "Multiobjective fractional programming duality theory," Naval Research Logistics (NRL), John Wiley & Sons, vol. 38(6), pages 925-933, December.
    4. Irfan Ali & Srikant Gupta & Aquil Ahmed, 2019. "Multi-objective linear fractional inventory problem under intuitionistic fuzzy environment," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 10(2), pages 173-189, April.
    5. Lara, P. & Stancu-Minasian, I., 1999. "Fractional programming: a tool for the assessment of sustainability," Agricultural Systems, Elsevier, vol. 62(2), pages 131-141, November.
    6. Vuciterna, Rina & Thomsen, Michael & Popp, Jennie & Musliu, Arben, 2017. "Efficiency and Competitiveness of Kosovo Raspberry Producers," 2017 Annual Meeting, February 4-7, 2017, Mobile, Alabama 252770, Southern Agricultural Economics Association.
    7. Berna Tektas Sivrikaya & Ferhan Cebi & Hasan Hüseyin Turan & Nihat Kasap & Dursun Delen, 2017. "A fuzzy long-term investment planning model for a GenCo in a hybrid electricity market considering climate change impacts," Information Systems Frontiers, Springer, vol. 19(5), pages 975-991, October.
    8. Collan, Mikael, 2008. "New Method for Real Option Valuation Using Fuzzy Numbers," Working Papers 466, IAMSR, Åbo Akademi.
    9. Kim, Jong Soon & Whang, Kyu-Seung, 1998. "A tolerance approach to the fuzzy goal programming problems with unbalanced triangular membership function," European Journal of Operational Research, Elsevier, vol. 107(3), pages 614-624, June.
    10. Berna Tektaş & Hasan Hüseyin Turan & Nihat Kasap & Ferhan Çebi & Dursun Delen, 2022. "A Fuzzy Prescriptive Analytics Approach to Power Generation Capacity Planning," Energies, MDPI, vol. 15(9), pages 1-26, April.
    11. Chen, Lisa Y. & Wang, Tien-Chin, 2009. "Optimizing partners' choice in IS/IT outsourcing projects: The strategic decision of fuzzy VIKOR," International Journal of Production Economics, Elsevier, vol. 120(1), pages 233-242, July.
    12. Víctor G. Alfaro-García & Anna M. Gil-Lafuente & Gerardo G. Alfaro Calderón, 2017. "A fuzzy approach to a municipality grouping model towards creation of synergies," Computational and Mathematical Organization Theory, Springer, vol. 23(3), pages 391-408, September.
    13. Aghayi, Nazila & Maleki, Bentolhoda, 2016. "Efficiency measurement of DMUs with undesirable outputs under uncertainty based on the directional distance function: Application on bank industry," Energy, Elsevier, vol. 112(C), pages 376-387.
    14. Wenyao Niu & Yuan Rong & Liying Yu & Lu Huang, 2022. "A Novel Hybrid Group Decision Making Approach Based on EDAS and Regret Theory under a Fermatean Cubic Fuzzy Environment," Mathematics, MDPI, vol. 10(17), pages 1-30, August.
    15. de Andres-Sanchez, Jorge, 2007. "Claim reserving with fuzzy regression and Taylor's geometric separation method," Insurance: Mathematics and Economics, Elsevier, vol. 40(1), pages 145-163, January.
    16. Mikhailov, L., 2004. "A fuzzy approach to deriving priorities from interval pairwise comparison judgements," European Journal of Operational Research, Elsevier, vol. 159(3), pages 687-704, December.
    17. Hongyi Sun & Bingqian Zhang & Wenbin Ni, 2022. "A Hybrid Model Based on SEM and Fuzzy TOPSIS for Supplier Selection," Mathematics, MDPI, vol. 10(19), pages 1-19, September.
    18. Liu, Yong-Jun & Zhang, Wei-Guo, 2015. "A multi-period fuzzy portfolio optimization model with minimum transaction lots," European Journal of Operational Research, Elsevier, vol. 242(3), pages 933-941.
    19. Sajid Ali & Sang-Moon Lee & Choon-Man Jang, 2017. "Determination of the Most Optimal On-Shore Wind Farm Site Location Using a GIS-MCDM Methodology: Evaluating the Case of South Korea," Energies, MDPI, vol. 10(12), pages 1-22, December.
    20. David Opresnik & Maurizio Fiasché & Marco Taisch & Manuel Hirsch, 0. "An evolving fuzzy inference system for extraction of rule set for planning a product–service strategy," Information Technology and Management, Springer, vol. 0, pages 1-17.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:ijsaem:v:13:y:2022:i:4:d:10.1007_s13198-022-01618-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.