IDEAS home Printed from https://ideas.repec.org/a/spr/finsto/v24y2020i3d10.1007_s00780-020-00422-7.html
   My bibliography  Save this article

Fast mean-reversion asymptotics for large portfolios of stochastic volatility models

Author

Listed:
  • Ben Hambly

    (University of Oxford)

  • Nikolaos Kolliopoulos

    (University of Oxford
    Beijing University)

Abstract

We consider an asymptotic SPDE description of a large portfolio model where the underlying asset prices evolve according to certain stochastic volatility models with default upon hitting a lower barrier. The asset prices and their volatilities are correlated through systemic Brownian motions, and the SPDE is obtained on the positive half-space along with a Dirichlet boundary condition. We study the convergence of the loss from the system, which is given in terms of the total mass of a solution to our stochastic initial-boundary value problem, under fast mean-reversion of the volatility. We consider two cases. In the first case, the volatilities are sped up towards a limiting distribution and the system converges only in a weak sense. On the other hand, when only the mean-reversion coefficients of the volatilities are allowed to grow large, we see a stronger form of convergence of the system to its limit. Our results show that in a fast mean-reverting volatility environment, we can accurately estimate the distribution of the loss from a large portfolio by using an approximate constant volatility model which is easier to handle.

Suggested Citation

  • Ben Hambly & Nikolaos Kolliopoulos, 2020. "Fast mean-reversion asymptotics for large portfolios of stochastic volatility models," Finance and Stochastics, Springer, vol. 24(3), pages 757-794, July.
  • Handle: RePEc:spr:finsto:v:24:y:2020:i:3:d:10.1007_s00780-020-00422-7
    DOI: 10.1007/s00780-020-00422-7
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00780-020-00422-7
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00780-020-00422-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kay Giesecke & Konstantinos Spiliopoulos & Richard B. Sowers & Justin A. Sirignano, 2015. "Large Portfolio Asymptotics For Loss From Default," Mathematical Finance, Wiley Blackwell, vol. 25(1), pages 77-114, January.
    2. Ben Hambly & Nikolaos Kolliopoulos, 2019. "Stochastic PDEs for large portfolios with general mean-reverting volatility processes," Papers 1906.05898, arXiv.org, revised Mar 2024.
    3. Bhattacharya, R. N. & Ramasubramanian, S., 1982. "Recurrence and ergodicity of diffusions," Journal of Multivariate Analysis, Elsevier, vol. 12(1), pages 95-122, March.
    4. Konstantinos Spiliopoulos & Richard B. Sowers, 2010. "Recovery Rates in investment-grade pools of credit assets: A large deviations analysis," Papers 1006.2711, arXiv.org, revised Aug 2011.
    5. Kay Giesecke & Konstantinos Spiliopoulos & Richard B. Sowers & Justin A. Sirignano, 2011. "Large Portfolio Asymptotics for Loss From Default," Papers 1109.1272, arXiv.org, revised Feb 2015.
    6. Spiliopoulos, Konstantinos & Sowers, Richard B., 2011. "Recovery rates in investment-grade pools of credit assets: A large deviations analysis," Stochastic Processes and their Applications, Elsevier, vol. 121(12), pages 2861-2898.
    7. Paolo Dai Pra & Wolfgang J. Runggaldier & Elena Sartori & Marco Tolotti, 2007. "Large portfolio losses: A dynamic contagion model," Papers 0704.1348, arXiv.org, revised Mar 2009.
    8. Justin Sirignano & Kay Giesecke, 2019. "Risk Analysis for Large Pools of Loans," Management Science, INFORMS, vol. 65(1), pages 107-121, January.
    9. Ben Hambly & Nikolaos Kolliopoulos, 2019. "ERRATUM: Stochastic evolution equations for large portfolios of stochastic volatility models," Papers 1905.04397, arXiv.org.
    10. Kay Giesecke & Konstantinos Spiliopoulos & Richard B. Sowers, 2011. "Default clustering in large portfolios: Typical events," Papers 1104.1773, arXiv.org, revised Feb 2013.
    11. Michael B. Giles & Christoph Reisinger, 2012. "Stochastic finite differences and multilevel Monte Carlo for a class of SPDEs in finance," Papers 1204.1442, arXiv.org.
    12. Dai Pra, Paolo & Tolotti, Marco, 2009. "Heterogeneous credit portfolios and the dynamics of the aggregate losses," Stochastic Processes and their Applications, Elsevier, vol. 119(9), pages 2913-2944, September.
    13. Konstantinos Spiliopoulos & Richard B. Sowers, 2013. "Default Clustering in Large Pools: Large Deviations," Papers 1311.0498, arXiv.org, revised Feb 2015.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Luca Galimberti & Anastasis Kratsios & Giulia Livieri, 2022. "Designing Universal Causal Deep Learning Models: The Case of Infinite-Dimensional Dynamical Systems from Stochastic Analysis," Papers 2210.13300, arXiv.org, revised May 2023.
    2. Tang, Qihe & Tong, Zhiwei & Yang, Yang, 2021. "Large portfolio losses in a turbulent market," European Journal of Operational Research, Elsevier, vol. 292(2), pages 755-769.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Justin Sirignano & Kay Giesecke, 2019. "Risk Analysis for Large Pools of Loans," Management Science, INFORMS, vol. 65(1), pages 107-121, January.
    2. Ben Hambly & Nikolaos Kolliopoulos, 2018. "Fast mean-reversion asymptotics for large portfolios of stochastic volatility models," Papers 1811.08808, arXiv.org, revised Feb 2020.
    3. Ben Hambly & Nikolaos Kolliopoulos, 2019. "Stochastic PDEs for large portfolios with general mean-reverting volatility processes," Papers 1906.05898, arXiv.org, revised Mar 2024.
    4. Konstantinos Spiliopoulos & Jia Yang, 2018. "Network effects in default clustering for large systems," Papers 1812.07645, arXiv.org, revised Feb 2020.
    5. Josselin Garnier & George Papanicolaou & Tzu-Wei Yang, 2015. "A risk analysis for a system stabilized by a central agent," Papers 1507.08333, arXiv.org, revised Aug 2015.
    6. Sirignano, Justin & Spiliopoulos, Konstantinos, 2020. "Mean field analysis of neural networks: A central limit theorem," Stochastic Processes and their Applications, Elsevier, vol. 130(3), pages 1820-1852.
    7. Konstantinos Spiliopoulos & Richard B. Sowers, 2013. "Default Clustering in Large Pools: Large Deviations," Papers 1311.0498, arXiv.org, revised Feb 2015.
    8. Konstantinos Spiliopoulos, 2014. "Systemic Risk and Default Clustering for Large Financial Systems," Papers 1402.5352, arXiv.org, revised Feb 2015.
    9. Tang, Qihe & Tong, Zhiwei & Yang, Yang, 2021. "Large portfolio losses in a turbulent market," European Journal of Operational Research, Elsevier, vol. 292(2), pages 755-769.
    10. Xiaowei Zhang & Jose Blanchet & Kay Giesecke & Peter W. Glynn, 2015. "Affine Point Processes: Approximation and Efficient Simulation," Mathematics of Operations Research, INFORMS, vol. 40(4), pages 797-819, October.
    11. Ben Hambly & Andreas Sojmark, 2018. "An SPDE Model for Systemic Risk with Endogenous Contagion," Papers 1801.10088, arXiv.org, revised Sep 2018.
    12. Tang, Qihe & Tang, Zhaofeng & Yang, Yang, 2019. "Sharp asymptotics for large portfolio losses under extreme risks," European Journal of Operational Research, Elsevier, vol. 276(2), pages 710-722.
    13. Amogh Deshpande, 2014. "Comparing the Value at Risk Performance of the CreditRisk + and its Enhancement: A Large Deviations Approach," Methodology and Computing in Applied Probability, Springer, vol. 16(4), pages 1009-1023, December.
    14. Ben Hambly & Andreas Søjmark, 2019. "An SPDE model for systemic risk with endogenous contagion," Finance and Stochastics, Springer, vol. 23(3), pages 535-594, July.
    15. Agostino Capponi & Xu Sun & David D. Yao, 2020. "A Dynamic Network Model of Interbank Lending—Systemic Risk and Liquidity Provisioning," Mathematics of Operations Research, INFORMS, vol. 45(3), pages 1127-1152, August.
    16. Jean-David Fermanian, 2020. "On the Dependence between Default Risk and Recovery Rates in Structural Models," Annals of Economics and Statistics, GENES, issue 140, pages 45-82.
    17. Egami, M. & Kevkhishvili, R., 2017. "An analysis of simultaneous company defaults using a shot noise process," Journal of Banking & Finance, Elsevier, vol. 80(C), pages 135-161.
    18. Burzoni, Matteo & Campi, Luciano, 2023. "Mean field games with absorption and common noise with a model of bank run," Stochastic Processes and their Applications, Elsevier, vol. 164(C), pages 206-241.
    19. Frikha, Noufel & Li, Libo, 2021. "Well-posedness and approximation of some one-dimensional Lévy-driven non-linear SDEs," Stochastic Processes and their Applications, Elsevier, vol. 132(C), pages 76-107.
    20. Gao, Fuqing & Zhu, Lingjiong, 2018. "Some asymptotic results for nonlinear Hawkes processes," Stochastic Processes and their Applications, Elsevier, vol. 128(12), pages 4051-4077.

    More about this item

    Keywords

    Large portfolio; Stochastic volatility; Distance to default; Systemic risk; Mean-field; SPDE; Fast mean-reversion; Large time-scale;
    All these keywords.

    JEL classification:

    • C02 - Mathematical and Quantitative Methods - - General - - - Mathematical Economics
    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
    • G32 - Financial Economics - - Corporate Finance and Governance - - - Financing Policy; Financial Risk and Risk Management; Capital and Ownership Structure; Value of Firms; Goodwill

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:finsto:v:24:y:2020:i:3:d:10.1007_s00780-020-00422-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.