IDEAS home Printed from https://ideas.repec.org/a/spr/empeco/v55y2018i4d10.1007_s00181-017-1341-3.html
   My bibliography  Save this article

Analysis of electricity prices for Central American countries using dynamic conditional score models

Author

Listed:
  • Szabolcs Blazsek

    (Universidad Francisco Marroquín)

  • Hector Hernández

    (Universidad Francisco Marroquín)

Abstract

In this paper, we compare the performance of dynamic conditional score (DCS) and standard financial time-series models for Central American energy prices. We extend the Student’s t and the exponential generalised beta distribution of the second kind stochastic location and stochastic seasonal DCS models. We consider the generalised t distribution as an alternative for the error term and also consider dynamic specifications of volatility. We use a unique dataset of spot electricity prices for El Salvador, Guatemala and Panama. We consider two data windows for each country, which are defined with respect to the liberalisation and development process of the energy market in Central America. We study the identification of a wide range of DCS specifications, likelihood-based model performance, time-series components of energy prices, maximum likelihood parameter estimates, the discounting property of conditional score, and out-of-sample forecast performance. Our main results are the following. (i) We determine the most robust models of energy prices, with respect to parameter identification, from a wide range of DCS specifications. (ii) For most of the cases, the in-sample statistical performance of DCS is superior to that of the standard model. (iii) For El Salvador and Panama, the standard model provides better point forecasts than DCS, and for Guatemala the point forecast precision of standard and DCS models does not differ significantly. (iv) For El Salvador, the standard model provides better density forecasts than DCS, and for Guatemala and Panama, the density forecast precision of standard and DCS models does not differ significantly.

Suggested Citation

  • Szabolcs Blazsek & Hector Hernández, 2018. "Analysis of electricity prices for Central American countries using dynamic conditional score models," Empirical Economics, Springer, vol. 55(4), pages 1807-1848, December.
  • Handle: RePEc:spr:empeco:v:55:y:2018:i:4:d:10.1007_s00181-017-1341-3
    DOI: 10.1007/s00181-017-1341-3
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00181-017-1341-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00181-017-1341-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Michele Caivano & Andrew Harvey & Alessandra Luati, 2016. "Robust time series models with trend and seasonal components," SERIEs: Journal of the Spanish Economic Association, Springer;Spanish Economic Association, vol. 7(1), pages 99-120, March.
    2. Nelson, Daniel B, 1991. "Conditional Heteroskedasticity in Asset Returns: A New Approach," Econometrica, Econometric Society, vol. 59(2), pages 347-370, March.
    3. Knittel, Christopher R. & Roberts, Michael R., 2005. "An empirical examination of restructured electricity prices," Energy Economics, Elsevier, vol. 27(5), pages 791-817, September.
    4. Harvey,Andrew C., 2013. "Dynamic Models for Volatility and Heavy Tails," Cambridge Books, Cambridge University Press, number 9781107630024, January.
    5. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
    6. Andrew Harvey & Alessandra Luati, 2014. "Filtering With Heavy Tails," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 109(507), pages 1112-1122, September.
    7. Diebold, Francis X & Mariano, Roberto S, 2002. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 134-144, January.
    8. Vuong, Quang H, 1989. "Likelihood Ratio Tests for Model Selection and Non-nested Hypotheses," Econometrica, Econometric Society, vol. 57(2), pages 307-333, March.
    9. Newey, Whitney & West, Kenneth, 2014. "A simple, positive semi-definite, heteroscedasticity and autocorrelation consistent covariance matrix," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 33(1), pages 125-132.
    10. Glosten, Lawrence R & Jagannathan, Ravi & Runkle, David E, 1993. "On the Relation between the Expected Value and the Volatility of the Nominal Excess Return on Stocks," Journal of Finance, American Finance Association, vol. 48(5), pages 1779-1801, December.
    11. Amisano, Gianni & Giacomini, Raffaella, 2007. "Comparing Density Forecasts via Weighted Likelihood Ratio Tests," Journal of Business & Economic Statistics, American Statistical Association, vol. 25, pages 177-190, April.
    12. Alvaro Escribano & J. Ignacio Peña & Pablo Villaplana, 2011. "Modelling Electricity Prices: International Evidence," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 73(5), pages 622-650, October.
    13. Michele Caivano & Andrew Harvey, 2014. "Time-series models with an EGB2 conditional distribution," Journal of Time Series Analysis, Wiley Blackwell, vol. 35(6), pages 558-571, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Blazsek, Szabolcs & Escribano, Álvaro & Licht, Adrian, 2018. "Seasonal Quasi-Vector Autoregressive Models with an Application to Crude Oil Production and Economic Activity in the United States and Canada," UC3M Working papers. Economics 27484, Universidad Carlos III de Madrid. Departamento de Economía.
    2. Rehman, Mobeen Ur & Owusu Junior, Peterson & Ahmad, Nasir & Vo, Xuan Vinh, 2022. "Time-varying risk analysis for commodity futures," Resources Policy, Elsevier, vol. 78(C).
    3. Andr s Oviedo-G mez & Sandra Milena Londo o-Hern ndez & Diego Fernando Manotas-Duque, 2021. "Electricity Price Fundamentals in Hydrothermal Power Generation Markets Using Machine Learning and Quantile Regression Analysis," International Journal of Energy Economics and Policy, Econjournals, vol. 11(5), pages 66-77.
    4. Astrid Ayala & Szabolcs Blazsek, 2019. "Score-driven currency exchange rate seasonality as applied to the Guatemalan Quetzal/US Dollar," SERIEs: Journal of the Spanish Economic Association, Springer;Spanish Economic Association, vol. 10(1), pages 65-92, March.
    5. Blazsek, Szabolcs & Escribano, Álvaro & Licht, Adrian, 2018. "Seasonal quasi-vector autoregressive models for macroeconomic data," UC3M Working papers. Economics 26316, Universidad Carlos III de Madrid. Departamento de Economía.
    6. Owusu Junior, Peterson & Alagidede, Imhotep, 2020. "Risks in emerging markets equities: Time-varying versus spatial risk analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 542(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Astrid Ayala & Szabolcs Blazsek, 2019. "Score-driven currency exchange rate seasonality as applied to the Guatemalan Quetzal/US Dollar," SERIEs: Journal of the Spanish Economic Association, Springer;Spanish Economic Association, vol. 10(1), pages 65-92, March.
    2. Catania, Leopoldo & Proietti, Tommaso, 2020. "Forecasting volatility with time-varying leverage and volatility of volatility effects," International Journal of Forecasting, Elsevier, vol. 36(4), pages 1301-1317.
    3. Francisco Blasques & Paolo Gorgi & Siem Jan Koopman & Olivier Wintenberger, 2016. "Feasible Invertibility Conditions and Maximum Likelihood Estimation for Observation-Driven Models," Tinbergen Institute Discussion Papers 16-082/III, Tinbergen Institute.
    4. Astrid Ayala & Szabolcs Blazsek & Adrian Licht, 2022. "Score-driven stochastic seasonality of the Russian rouble: an application case study for the period of 1999 to 2020," Empirical Economics, Springer, vol. 62(5), pages 2179-2203, May.
    5. Tae-Hwy Lee & Yong Bao & Burak Saltoğlu, 2007. "Comparing density forecast models Previous versions of this paper have been circulated with the title, 'A Test for Density Forecast Comparison with Applications to Risk Management' since October 2003;," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 26(3), pages 203-225.
    6. F Blasques & P Gorgi & S Koopman & O Wintenberger, 2016. "Feasible Invertibility Conditions for Maximum Likelihood Estimation for Observation-Driven Models," Papers 1610.02863, arXiv.org.
    7. Bekaert, Geert & Engstrom, Eric & Ermolov, Andrey, 2015. "Bad environments, good environments: A non-Gaussian asymmetric volatility model," Journal of Econometrics, Elsevier, vol. 186(1), pages 258-275.
    8. F Blasques & P Gorgi & S J Koopman & O Wintenberger, 2016. "Feasible Invertibility Conditions for Maximum Likelihood Estimation for Observation-Driven Models ," Working Papers hal-01377971, HAL.
    9. Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022. "Forecasting: theory and practice," International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
      • Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
    10. Olusanya E. Olubusoye & OlaOluwa S. Yaya, 2016. "Time series analysis of volatility in the petroleum pricing markets: the persistence, asymmetry and jumps in the returns series," OPEC Energy Review, Organization of the Petroleum Exporting Countries, vol. 40(3), pages 235-262, September.
    11. Christophe Chorro & Dominique Guegan & Florian Ielpo, 2010. "Option pricing for GARCH-type models with generalized hyperbolic innovations," Post-Print halshs-00469529, HAL.
    12. Nikolaos A. Kyriazis, 2021. "A Survey on Volatility Fluctuations in the Decentralized Cryptocurrency Financial Assets," JRFM, MDPI, vol. 14(7), pages 1-46, June.
    13. Meddahi, Nour & Renault, Eric, 2004. "Temporal aggregation of volatility models," Journal of Econometrics, Elsevier, vol. 119(2), pages 355-379, April.
    14. Xue Gong & Weiguo Zhang & Yuan Zhao & Xin Ye, 2023. "Forecasting stock volatility with a large set of predictors: A new forecast combination method," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(7), pages 1622-1647, November.
    15. Szabolcs Blazsek & Marco Villatoro, 2015. "Is Beta- t -EGARCH(1,1) superior to GARCH(1,1)?," Applied Economics, Taylor & Francis Journals, vol. 47(17), pages 1764-1774, April.
    16. Charles, Amélie & Darné, Olivier, 2017. "Forecasting crude-oil market volatility: Further evidence with jumps," Energy Economics, Elsevier, vol. 67(C), pages 508-519.
    17. Blazsek, Szabolcs & Escribano, Álvaro & Licht, Adrian, 2018. "Seasonal Quasi-Vector Autoregressive Models with an Application to Crude Oil Production and Economic Activity in the United States and Canada," UC3M Working papers. Economics 27484, Universidad Carlos III de Madrid. Departamento de Economía.
    18. Franses,Philip Hans & Dijk,Dick van & Opschoor,Anne, 2014. "Time Series Models for Business and Economic Forecasting," Cambridge Books, Cambridge University Press, number 9780521520911.
    19. Giovanni Bonaccolto & Massimiliano Caporin, 2016. "The Determinants of Equity Risk and Their Forecasting Implications: A Quantile Regression Perspective," JRFM, MDPI, vol. 9(3), pages 1-25, July.
    20. Per B. Solibakke, 2022. "Step‐ahead spot price densities using daily synchronously reported prices and wind forecasts," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 41(1), pages 17-42, January.

    More about this item

    Keywords

    Central America; Energy prices; Dynamic conditional score (DCS) models; Stochastic level and stochastic seasonal; Parameter identification; Point and density forecasts;
    All these keywords.

    JEL classification:

    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • C52 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Evaluation, Validation, and Selection
    • L94 - Industrial Organization - - Industry Studies: Transportation and Utilities - - - Electric Utilities
    • Q40 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:empeco:v:55:y:2018:i:4:d:10.1007_s00181-017-1341-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.