Advanced Search
MyIDEAS: Login

Filtering with heavy tails

Contents:

Author Info

  • Harvey, A.
  • Luati, A.

Abstract

An unobserved components model in which the signal is buried in noise that is non-Gaussian may throw up observations that, when judged by the Gaussian yardstick, are outliers. We describe an observation driven model, based on a conditional Student t-distribution, that is tractable and retains some of the desirable features of the linear Gaussian model. Letting the dynamics be driven by the score of the conditional distribution leads to a specification that is not only easy to implement, but which also facilitates the development of a comprehensive and relatively straightforward theory for the asymptotic distribution of the ML estimator. The methods are illustrated with an application to rail travel in the UK. The .final part of the article shows how the model may be extended to include explanatory variables.

Download Info

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
File URL: http://www.econ.cam.ac.uk/research/repec/cam/pdf/cwpe1255.pdf
Download Restriction: no

Bibliographic Info

Paper provided by Faculty of Economics, University of Cambridge in its series Cambridge Working Papers in Economics with number 1255.

as in new window
Length:
Date of creation: 19 Dec 2012
Date of revision:
Handle: RePEc:cam:camdae:1255

Contact details of provider:
Web page: http://www.econ.cam.ac.uk/index.htm

Related research

Keywords: Outlier; robustness; score; seasonal; t-distribution; trend;

Find related papers by JEL classification:

This paper has been announced in the following NEP Reports:

References

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:
as in new window
  1. Drew Creal & Siem Jan Koopman & Andr� Lucas, 2010. "A Dynamic Multivariate Heavy-Tailed Model for Time-Varying Volatilities and Correlations," Tinbergen Institute Discussion Papers 10-032/2, Tinbergen Institute.
  2. Alysha M De Livera & Rob J Hyndman, 2009. "Forecasting time series with complex seasonal patterns using exponential smoothing," Monash Econometrics and Business Statistics Working Papers 15/09, Monash University, Department of Econometrics and Business Statistics.
  3. Jensen, S ren Tolver & Rahbek, Anders, 2004. "Asymptotic Inference For Nonstationary Garch," Econometric Theory, Cambridge University Press, vol. 20(06), pages 1203-1226, December.
  4. repec:dgr:uvatin:2010032 is not listed on IDEAS
  5. Harvey, A. & Sucarrat, G., 2012. "EGARCH models with fat tails, skewness and leverage," Cambridge Working Papers in Economics 1236, Faculty of Economics, University of Cambridge.
  6. Gould, Phillip G. & Koehler, Anne B. & Ord, J. Keith & Snyder, Ralph D. & Hyndman, Rob J. & Vahid-Araghi, Farshid, 2008. "Forecasting time series with multiple seasonal patterns," European Journal of Operational Research, Elsevier, vol. 191(1), pages 207-222, November.
Full references (including those not matched with items on IDEAS)

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as in new window

Cited by:
  1. Michele Caivano & Andrew Harvey, 2014. "Time series models with an EGB2 conditional distribution," Temi di discussione (Economic working papers) 947, Bank of Italy, Economic Research and International Relations Area.

Lists

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

Statistics

Access and download statistics

Corrections

When requesting a correction, please mention this item's handle: RePEc:cam:camdae:1255. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Howard Cobb).

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.