IDEAS home Printed from https://ideas.repec.org/a/spr/elmark/v32y2022i4d10.1007_s12525-022-00608-1.html
   My bibliography  Save this article

Designing a feature selection method based on explainable artificial intelligence

Author

Listed:
  • Jan Zacharias

    (Goethe University Frankfurt)

  • Moritz Zahn

    (Goethe University Frankfurt)

  • Johannes Chen

    (Goethe University Frankfurt)

  • Oliver Hinz

    (Goethe University Frankfurt)

Abstract

Nowadays, artificial intelligence (AI) systems make predictions in numerous high stakes domains, including credit-risk assessment and medical diagnostics. Consequently, AI systems increasingly affect humans, yet many state-of-the-art systems lack transparency and thus, deny the individual’s “right to explanation”. As a remedy, researchers and practitioners have developed explainable AI, which provides reasoning on how AI systems infer individual predictions. However, with recent legal initiatives demanding comprehensive explainability throughout the (development of an) AI system, we argue that the pre-processing stage has been unjustifiably neglected and should receive greater attention in current efforts to establish explainability. In this paper, we focus on introducing explainability to an integral part of the pre-processing stage: feature selection. Specifically, we build upon design science research to develop a design framework for explainable feature selection. We instantiate the design framework in a running software artifact and evaluate it in two focus group sessions. Our artifact helps organizations to persuasively justify feature selection to stakeholders and, thus, comply with upcoming AI legislation. We further provide researchers and practitioners with a design framework consisting of meta-requirements and design principles for explainable feature selection.

Suggested Citation

  • Jan Zacharias & Moritz Zahn & Johannes Chen & Oliver Hinz, 2022. "Designing a feature selection method based on explainable artificial intelligence," Electronic Markets, Springer;IIM University of St. Gallen, vol. 32(4), pages 2159-2184, December.
  • Handle: RePEc:spr:elmark:v:32:y:2022:i:4:d:10.1007_s12525-022-00608-1
    DOI: 10.1007/s12525-022-00608-1
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s12525-022-00608-1
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s12525-022-00608-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Khandani, Amir E. & Kim, Adlar J. & Lo, Andrew W., 2010. "Consumer credit-risk models via machine-learning algorithms," Journal of Banking & Finance, Elsevier, vol. 34(11), pages 2767-2787, November.
    2. Kai Jia & Nan Zhang, 2022. "Categorization and eccentricity of AI risks: a comparative study of the global AI guidelines," Electronic Markets, Springer;IIM University of St. Gallen, vol. 32(1), pages 59-71, March.
    3. Benjamin M. Abdel-Karim & Nicolas Pfeuffer & Oliver Hinz, 2021. "Machine learning in information systems - a bibliographic review and open research issues," Electronic Markets, Springer;IIM University of St. Gallen, vol. 31(3), pages 643-670, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wosnitza, Jan Henrik, 2022. "Calibration alternatives to logistic regression and their potential for transferring the dispersion of discriminatory power into uncertainties of probabilities of default," Discussion Papers 04/2022, Deutsche Bundesbank.
    2. Lucian Belascu & Alexandra Horobet & Georgiana Vrinceanu & Consuela Popescu, 2021. "Performance Dissimilarities in European Union Manufacturing: The Effect of Ownership and Technological Intensity," Sustainability, MDPI, vol. 13(18), pages 1-19, September.
    3. Apostolos Ampountolas & Titus Nyarko Nde & Paresh Date & Corina Constantinescu, 2021. "A Machine Learning Approach for Micro-Credit Scoring," Risks, MDPI, vol. 9(3), pages 1-20, March.
    4. Rainer Alt, 2021. "Electronic Markets on robotics," Electronic Markets, Springer;IIM University of St. Gallen, vol. 31(3), pages 465-471, September.
    5. Tobias Götze & Marc Gürtler & Eileen Witowski, 2020. "Improving CAT bond pricing models via machine learning," Journal of Asset Management, Palgrave Macmillan, vol. 21(5), pages 428-446, September.
    6. Roy Cerqueti & Francesca Pampurini & Annagiulia Pezzola & Anna Grazia Quaranta, 2022. "Dangerous liasons and hot customers for banks," Review of Quantitative Finance and Accounting, Springer, vol. 59(1), pages 65-89, July.
    7. Plakandaras, Vasilios & Papadimitriou, Theophilos & Gogas, Periklis, 2019. "Forecasting transportation demand for the U.S. market," Transportation Research Part A: Policy and Practice, Elsevier, vol. 126(C), pages 195-214.
    8. Kim, Jong-Min & Kim, Dong H. & Jung, Hojin, 2021. "Applications of machine learning for corporate bond yield spread forecasting," The North American Journal of Economics and Finance, Elsevier, vol. 58(C).
    9. Peter Martey Addo & Dominique Guegan & Bertrand Hassani, 2018. "Credit Risk Analysis Using Machine and Deep Learning Models," Risks, MDPI, vol. 6(2), pages 1-20, April.
    10. Fraisse, Henri & Laporte, Matthias, 2022. "Return on investment on artificial intelligence: The case of bank capital requirement," Journal of Banking & Finance, Elsevier, vol. 138(C).
    11. Vasilios Plakandaras & Elie Bouri & Rangan Gupta, 2019. "Forecasting Bitcoin Returns: Is there a Role for the U.S. – China Trade War?," Working Papers 201980, University of Pretoria, Department of Economics.
    12. Yiyan Huang & Cheuk Hang Leung & Xing Yan & Qi Wu & Nanbo Peng & Dongdong Wang & Zhixiang Huang, 2020. "The Causal Learning of Retail Delinquency," Papers 2012.09448, arXiv.org.
    13. Steven Heston & Nitish R. Sinha, 2016. "News versus Sentiment : Predicting Stock Returns from News Stories," Finance and Economics Discussion Series 2016-048, Board of Governors of the Federal Reserve System (U.S.).
    14. Berge, Travis J., 2018. "Understanding survey-based inflation expectations," International Journal of Forecasting, Elsevier, vol. 34(4), pages 788-801.
    15. Flood, Mark D. & Lemieux, Victoria L. & Varga, Margaret & William Wong, B.L., 2016. "The application of visual analytics to financial stability monitoring," Journal of Financial Stability, Elsevier, vol. 27(C), pages 180-197.
    16. Cristian KEVORCHIAN & Camelia GAVRILESCU & Gheorghe HURDUZEU, 2015. "An Approach Based On Big Data And Machine Learning For Optimizing The Management Of Agricultural Production Risks," Agricultural Economics and Rural Development, Institute of Agricultural Economics, vol. 12(2), pages 117-128.
    17. Shihao Gu & Bryan Kelly & Dacheng Xiu, 2020. "Empirical Asset Pricing via Machine Learning," The Review of Financial Studies, Society for Financial Studies, vol. 33(5), pages 2223-2273.
    18. Hinterlang, Natascha & Hollmayr, Josef, 2022. "Classification of monetary and fiscal dominance regimes using machine learning techniques," Journal of Macroeconomics, Elsevier, vol. 74(C).
    19. Longden, Elaine, 2021. "Predicting Nature of Default using Machine Learning Techniques," Other publications TiSEM e1d97882-8cf3-40a4-a82e-8, Tilburg University, School of Economics and Management.
    20. Aussenegg, Wolfgang & Resch, Florian & Winkler, Gerhard, 2011. "Pitfalls and remedies in testing the calibration quality of rating systems," Journal of Banking & Finance, Elsevier, vol. 35(3), pages 698-708, March.

    More about this item

    Keywords

    Explainable artificial intelligence; Machine learning; Feature selection; Design science research; SHAP values; Preprocessing;
    All these keywords.

    JEL classification:

    • C8 - Mathematical and Quantitative Methods - - Data Collection and Data Estimation Methodology; Computer Programs
    • L1 - Industrial Organization - - Market Structure, Firm Strategy, and Market Performance

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:elmark:v:32:y:2022:i:4:d:10.1007_s12525-022-00608-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.