IDEAS home Printed from https://ideas.repec.org/a/spr/dyngam/v13y2023i4d10.1007_s13235-023-00533-8.html
   My bibliography  Save this article

Eco-evolutionary Logic of Mutualisms

Author

Listed:
  • Chaitanya S. Gokhale

    (Center for Computational and Theoretical Biology
    Massey University
    Max Planck Institute for Evolutionary Biology)

  • Marcus Frean

    (Victoria University of Wellington)

  • Paul B. Rainey

    (Massey University
    Max Planck Institute for Evolutionary Biology
    Université PSL)

Abstract

Mutualistic interactions among members of different species are common, seemingly stable, and thus apparently enduring. This is at odds with standard mathematical models based solely on between-species interactions, which show mutualisms to be inherently unstable. Models incorporating parameters for punishment and reward strategies demonstrate that the range of conditions over which stability is observed can be extended; however, the role of community-level dynamics impacted by within-species interactions remains relatively unexplored. Here we develop a general and readily applicable approach for analysing a broad range of mutualisms. By incorporating within-species interactions, we show that mutualisms can be stably maintained across diverse environmental conditions without introducing changes to between-species interaction parameters. Further, a balance of within- and between-species interactions is sufficient to allow the persistence of mutualisms encountering ecological perturbations. Our simple and robust framework resonates with emerging empirical data highlighting the role of community-level interactions and population dynamics in maintaining mutualisms.

Suggested Citation

  • Chaitanya S. Gokhale & Marcus Frean & Paul B. Rainey, 2023. "Eco-evolutionary Logic of Mutualisms," Dynamic Games and Applications, Springer, vol. 13(4), pages 1066-1087, December.
  • Handle: RePEc:spr:dyngam:v:13:y:2023:i:4:d:10.1007_s13235-023-00533-8
    DOI: 10.1007/s13235-023-00533-8
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s13235-023-00533-8
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s13235-023-00533-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. E. Toby Kiers & Robert A. Rousseau & Stuart A. West & R. Ford Denison, 2003. "Host sanctions and the legume–rhizobium mutualism," Nature, Nature, vol. 425(6953), pages 78-81, September.
    2. Gokhale, Chaitanya S. & Hauert, Christoph, 2016. "Eco-evolutionary dynamics of social dilemmas," Theoretical Population Biology, Elsevier, vol. 111(C), pages 28-42.
    3. Chamberland, Marc & Cressman, Ross, 2000. "An Example of Dynamic (In)Consistency in Symmetric Extensive Form Evolutionary Games," Games and Economic Behavior, Elsevier, vol. 30(2), pages 319-326, February.
    4. Hubertus J. E. Beaumont & Jenna Gallie & Christian Kost & Gayle C. Ferguson & Paul B. Rainey, 2009. "Experimental evolution of bet hedging," Nature, Nature, vol. 462(7269), pages 90-93, November.
    5. Andrew R. Tilman & Joshua B. Plotkin & Erol Akçay, 2020. "Evolutionary games with environmental feedbacks," Nature Communications, Nature, vol. 11(1), pages 1-11, December.
    6. Ross Cressman & Andrea Gaunersdorfer & Jean-François Wen, 2000. "Evolutionary And Dynamic Stability In Symmetric Evolutionary Games With Two Independent Decisions," International Game Theory Review (IGTR), World Scientific Publishing Co. Pte. Ltd., vol. 2(01), pages 67-81.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Christian Hilbe & Maria Kleshnina & Kateřina Staňková, 2023. "Evolutionary Games and Applications: Fifty Years of ‘The Logic of Animal Conflict’," Dynamic Games and Applications, Springer, vol. 13(4), pages 1035-1048, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhao, Zhengwu & Zhang, Chunyan, 2023. "The mechanisms of labor division from the perspective of task urgency and game theory," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 630(C).
    2. Erwin Amann & Alex Possajennikov, 2004. "Evolution in Symmetric Incomplete Information Games," Game Theory and Information 0409004, University Library of Munich, Germany.
    3. Amann, Erwin & Possajennikov, Alex, 2009. "On the stability of evolutionary dynamics in games with incomplete information," Mathematical Social Sciences, Elsevier, vol. 58(3), pages 310-321, November.
    4. Yang, Luhe & Zhang, Lianzhong, 2021. "Environmental feedback in spatial public goods game," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).
    5. Zhang, Liming & Li, Haihong & Dai, Qionglin & Yang, Junzhong, 2022. "Migration based on environment comparison promotes cooperation in evolutionary games," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 595(C).
    6. Stojkoski, Viktor & Karbevski, Marko & Utkovski, Zoran & Basnarkov, Lasko & Kocarev, Ljupco, 2021. "Evolution of cooperation in networked heterogeneous fluctuating environments," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 572(C).
    7. Yan, Fang & Hou, Xiaorong & Tian, Tingting & Chen, Xiaojie, 2023. "Nonlinear model reference adaptive control approach for governance of the commons in a feedback-evolving game," Chaos, Solitons & Fractals, Elsevier, vol. 174(C).
    8. Han, Jia-Xu & Wang, Rui-Wu, 2023. "Complex interactions promote the frequency of cooperation in snowdrift game," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 609(C).
    9. Gao, Lei & Li, Yaotang & Wang, Zhen & Wang, Rui-Wu, 2022. "Asymmetric strategy setup solve the Prisoner’s Dilemma of the evolution of mutualism," Applied Mathematics and Computation, Elsevier, vol. 412(C).
    10. Zhang, Liming & Li, Haihong & Dai, Qionglin & Yang, Junzhong, 2022. "Adaptive persistence based on environment comparison enhances cooperation in evolutionary games," Applied Mathematics and Computation, Elsevier, vol. 421(C).
    11. Peña, Jorge & Nöldeke, Georg & Lehmann, Laurent, 2014. "Relatedness and synergies of kind and scale in the evolution of helping," Working papers 2014/09, Faculty of Business and Economics - University of Basel.
    12. Gary Friedman & Stephen McCarthy & Dmitrii Rachinskii, 2014. "Hysteresis Can Grant Fitness in Stochastically Varying Environment," PLOS ONE, Public Library of Science, vol. 9(7), pages 1-9, July.
    13. Thomas Graham & Maria Kleshnina & Jerzy A. Filar, 2023. "Where Do Mistakes Lead? A Survey of Games with Incompetent Players," Dynamic Games and Applications, Springer, vol. 13(1), pages 231-264, March.
    14. Guoting Shen & Wenliang Ju & Yuqing Liu & Xiaobin Guo & Wei Zhao & Linchuan Fang, 2019. "Impact of Urea Addition and Rhizobium Inoculation on Plant Resistance in Metal Contaminated Soil," IJERPH, MDPI, vol. 16(11), pages 1-17, June.
    15. Ding, Rui & Wang, Xianjia & Liu, Yang & Zhao, Jinhua & Gu, Cuiling, 2023. "Evolutionary games with environmental feedbacks under an external incentive mechanism," Chaos, Solitons & Fractals, Elsevier, vol. 169(C).
    16. Sawa, Ryoji & Zusai, Dai, 2019. "Evolutionary dynamics in multitasking environments," Journal of Economic Behavior & Organization, Elsevier, vol. 166(C), pages 288-308.
    17. Sébastien Boyer & Lucas Hérissant & Gavin Sherlock, 2021. "Adaptation is influenced by the complexity of environmental change during evolution in a dynamic environment," PLOS Genetics, Public Library of Science, vol. 17(1), pages 1-27, January.
    18. Qi Su & Lei Zhou & Long Wang, 2019. "Evolutionary multiplayer games on graphs with edge diversity," PLOS Computational Biology, Public Library of Science, vol. 15(4), pages 1-22, April.
    19. Wu, Yu’e & Zhang, Zhipeng & Wang, Xinyu & Yan, Ming & Zhang, Qingfeng & Zhang, Shuhua, 2021. "Evolution of cooperation in the multigame on a two-layer square network," Applied Mathematics and Computation, Elsevier, vol. 400(C).
    20. Terence C. Burnham & Aimee Dunlap & David W. Stephens, 2015. "Experimental Evolution and Economics," SAGE Open, , vol. 5(4), pages 21582440156, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:dyngam:v:13:y:2023:i:4:d:10.1007_s13235-023-00533-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.