IDEAS home Printed from https://ideas.repec.org/a/spr/compst/v30y2015i1p57-80.html
   My bibliography  Save this article

S-estimation of hidden Markov models

Author

Listed:
  • Alessio Farcomeni
  • Luca Greco

Abstract

A method for robust estimation of dynamic mixtures of multivariate distributions is proposed. The EM algorithm is modified by replacing the classical M-step with high breakdown S-estimation of location and scatter, performed by using the bisquare multivariate S-estimator. Estimates are obtained by solving a system of estimating equations that are characterized by component specific sets of weights, based on robust Mahalanobis-type distances. Convergence of the resulting algorithm is proved and its finite sample behavior is investigated by means of a brief simulation study and n application to a multivariate time series of daily returns for seven stock markets. Copyright Springer-Verlag Berlin Heidelberg 2015

Suggested Citation

  • Alessio Farcomeni & Luca Greco, 2015. "S-estimation of hidden Markov models," Computational Statistics, Springer, vol. 30(1), pages 57-80, March.
  • Handle: RePEc:spr:compst:v:30:y:2015:i:1:p:57-80
    DOI: 10.1007/s00180-014-0521-2
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s00180-014-0521-2
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s00180-014-0521-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Cerioli, Andrea & Farcomeni, Alessio & Riani, Marco, 2013. "Robust distances for outlier-free goodness-of-fit testing," Computational Statistics & Data Analysis, Elsevier, vol. 65(C), pages 29-45.
    2. Cerioli, Andrea & Farcomeni, Alessio, 2011. "Error rates for multivariate outlier detection," Computational Statistics & Data Analysis, Elsevier, vol. 55(1), pages 544-553, January.
    3. Altman, Rachel MacKay, 2007. "Mixed Hidden Markov Models: An Extension of the Hidden Markov Model to the Longitudinal Data Setting," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 201-210, March.
    4. Marc G. Genton & André Lucas, 2003. "Comprehensive definitions of breakdown points for independent and dependent observations," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 65(1), pages 81-94, February.
    5. Farcomeni Alessio & Arima Serena, 2012. "A Bayesian autoregressive three-state hidden Markov model for identifying switching monotonic regimes in Microarray time course data," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 11(4), pages 1-31, June.
    6. Marco Riani & Andrea Cerioli & Francesca Torti, 2014. "On consistency factors and efficiency of robust S-estimators," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 23(2), pages 356-387, June.
    7. Francesco Bartolucci & Alessio Farcomeni, 2010. "A note on the mixture transition distribution and hidden Markov models," Journal of Time Series Analysis, Wiley Blackwell, vol. 31(2), pages 132-138, March.
    8. J. A. Cuesta‐Albertos & C. Matrán & A. Mayo‐Iscar, 2008. "Robust estimation in the normal mixture model based on robust clustering," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 70(4), pages 779-802, September.
    9. Marianthi Markatou, 2000. "Mixture Models, Robustness, and the Weighted Likelihood Methodology," Biometrics, The International Biometric Society, vol. 56(2), pages 483-486, June.
    10. Lawrence Hubert & Phipps Arabie, 1985. "Comparing partitions," Journal of Classification, Springer;The Classification Society, vol. 2(1), pages 193-218, December.
    11. Jan Bulla, 2010. "Hidden Markov models with t components. Increased persistence and other aspects," Quantitative Finance, Taylor & Francis Journals, vol. 11(3), pages 459-475.
    12. Bashir, Shaheena & Carter, E. M., 2005. "High breakdown mixture discriminant analysis," Journal of Multivariate Analysis, Elsevier, vol. 93(1), pages 102-111, March.
    13. Neykov, N. & Filzmoser, P. & Dimova, R. & Neytchev, P., 2007. "Robust fitting of mixtures using the trimmed likelihood estimator," Computational Statistics & Data Analysis, Elsevier, vol. 52(1), pages 299-308, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Maruotti, Antonello & Punzo, Antonio, 2017. "Model-based time-varying clustering of multivariate longitudinal data with covariates and outliers," Computational Statistics & Data Analysis, Elsevier, vol. 113(C), pages 475-496.
    2. Sugasawa, Shonosuke & Kobayashi, Genya, 2022. "Robust fitting of mixture models using weighted complete estimating equations," Computational Statistics & Data Analysis, Elsevier, vol. 174(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. F. Bartolucci & A. Farcomeni & F. Pennoni, 2014. "Latent Markov models: a review of a general framework for the analysis of longitudinal data with covariates," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 23(3), pages 433-465, September.
    2. Francesco Dotto & Alessio Farcomeni & Luis Angel García-Escudero & Agustín Mayo-Iscar, 2017. "A fuzzy approach to robust regression clustering," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 11(4), pages 691-710, December.
    3. Luca Greco, 2022. "Robust fitting of mixtures of GLMs by weighted likelihood," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 106(1), pages 25-48, March.
    4. Luis García-Escudero & Alfonso Gordaliza & Carlos Matrán & Agustín Mayo-Iscar, 2010. "A review of robust clustering methods," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 4(2), pages 89-109, September.
    5. Yao, Weixin & Wei, Yan & Yu, Chun, 2014. "Robust mixture regression using the t-distribution," Computational Statistics & Data Analysis, Elsevier, vol. 71(C), pages 116-127.
    6. Chalabi, Yohan / Y. & Wuertz, Diethelm, 2010. "Weighted trimmed likelihood estimator for GARCH models," MPRA Paper 26536, University Library of Munich, Germany.
    7. L. A. García-Escudero & A. Gordaliza & C. Matrán & A. Mayo-Iscar, 2018. "Comments on “The power of monitoring: how to make the most of a contaminated multivariate sample”," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 27(4), pages 605-608, December.
    8. Cerioli, Andrea & Farcomeni, Alessio & Riani, Marco, 2014. "Strong consistency and robustness of the Forward Search estimator of multivariate location and scatter," Journal of Multivariate Analysis, Elsevier, vol. 126(C), pages 167-183.
    9. Luca Greco & Giovanni Saraceno & Claudio Agostinelli, 2021. "Robust Fitting of a Wrapped Normal Model to Multivariate Circular Data and Outlier Detection," Stats, MDPI, vol. 4(2), pages 1-18, June.
    10. Neykov, N.M. & Filzmoser, P. & Neytchev, P.N., 2012. "Robust joint modeling of mean and dispersion through trimming," Computational Statistics & Data Analysis, Elsevier, vol. 56(1), pages 34-48, January.
    11. Bai, Xiuqin & Yao, Weixin & Boyer, John E., 2012. "Robust fitting of mixture regression models," Computational Statistics & Data Analysis, Elsevier, vol. 56(7), pages 2347-2359.
    12. Maruotti, Antonello & Petrella, Lea & Sposito, Luca, 2021. "Hidden semi-Markov-switching quantile regression for time series," Computational Statistics & Data Analysis, Elsevier, vol. 159(C).
    13. L. García-Escudero & A. Gordaliza & A. Mayo-Iscar, 2014. "A constrained robust proposal for mixture modeling avoiding spurious solutions," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 8(1), pages 27-43, March.
    14. Xia, Ye-Mao & Tang, Nian-Sheng, 2019. "Bayesian analysis for mixture of latent variable hidden Markov models with multivariate longitudinal data," Computational Statistics & Data Analysis, Elsevier, vol. 132(C), pages 190-211.
    15. Greco, Luca & Pacillo, Simona & Maresca, Piera, 2023. "An impartial trimming algorithm for robust circle fitting," Computational Statistics & Data Analysis, Elsevier, vol. 181(C).
    16. Pietro Coretto & Christian Hennig, 2016. "Robust Improper Maximum Likelihood: Tuning, Computation, and a Comparison With Other Methods for Robust Gaussian Clustering," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(516), pages 1648-1659, October.
    17. Riani, Marco & Atkinson, Anthony Curtis & Corbellini, Aldo & Farcomeni, Alessio & Laurini, Fabrizio, 2024. "Information Criteria for Outlier Detection Avoiding Arbitrary Significance Levels," Econometrics and Statistics, Elsevier, vol. 29(C), pages 189-205.
    18. Bernardi, Mauro & Maruotti, Antonello & Petrella, Lea, 2017. "Multiple risk measures for multivariate dynamic heavy–tailed models," Journal of Empirical Finance, Elsevier, vol. 43(C), pages 1-32.
    19. Catania, Leopoldo & Di Mari, Roberto, 2021. "Hierarchical Markov-switching models for multivariate integer-valued time-series," Journal of Econometrics, Elsevier, vol. 221(1), pages 118-137.
    20. Chun Yu & Weixin Yao & Guangren Yang, 2020. "A Selective Overview and Comparison of Robust Mixture Regression Estimators," International Statistical Review, International Statistical Institute, vol. 88(1), pages 176-202, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:compst:v:30:y:2015:i:1:p:57-80. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.