Advanced Search
MyIDEAS: Login to save this paper or follow this series

Weighted trimmed likelihood estimator for GARCH models

Contents:

Author Info

  • Chalabi, Yohan / Y.
  • Wuertz, Diethelm
Registered author(s):

    Abstract

    Generalized autoregressive heteroskedasticity (GARCH) models are widely used to reproduce stylized facts of financial time series and today play an essential role in risk management and volatility forecasting. But despite extensive research, problems are still encountered during parameter estimation in the presence of outliers. Here we show how this limitation can be overcome by applying the robust weighted trimmed likelihood estimator (WTLE) to the standard GARCH model. We suggest a fast implementation and explain how the additional robust parameter can be automatically estimated. We compare our approach with other recently introduced robust GARCH estimators and show through the results of an extensive simulation study that the proposed estimator provides robust and reliable estimates with a small computation cost. Moreover, the proposed fully automatic method for selecting the trimming parameter obviates the tedious fine tuning process required by other models to obtain a “robust” parameter, which may be appreciated by practitioners.

    Download Info

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
    File URL: http://mpra.ub.uni-muenchen.de/26536/
    File Function: original version
    Download Restriction: no

    File URL: http://mpra.ub.uni-muenchen.de/42903/
    File Function: revised version
    Download Restriction: no

    Bibliographic Info

    Paper provided by University Library of Munich, Germany in its series MPRA Paper with number 26536.

    as in new window
    Length:
    Date of creation: Oct 2010
    Date of revision:
    Handle: RePEc:pra:mprapa:26536

    Contact details of provider:
    Postal: Schackstr. 4, D-80539 Munich, Germany
    Phone: +49-(0)89-2180-2219
    Fax: +49-(0)89-2180-3900
    Web page: http://mpra.ub.uni-muenchen.de
    More information through EDIRC

    Related research

    Keywords: GARCH Models; Robust Estimators; Outliers; Weighted Trimmed Likelihood Estimator (WTLE); Quasi Maximum Likelihood Estimator (QMLE);

    Find related papers by JEL classification:

    This paper has been announced in the following NEP Reports:

    References

    References listed on IDEAS
    Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:
    as in new window
    1. Neykov, N. & Filzmoser, P. & Dimova, R. & Neytchev, P., 2007. "Robust fitting of mixtures using the trimmed likelihood estimator," Computational Statistics & Data Analysis, Elsevier, vol. 52(1), pages 299-308, September.
    2. Tim Bollerslev, 1986. "Generalized autoregressive conditional heteroskedasticity," EERI Research Paper Series EERI RP 1986/01, Economics and Econometrics Research Institute (EERI), Brussels.
    3. Cizek, P., 2004. "General Trimmed Estimation: Robust Approach to Nonlinear and Limited Dependent Variable Models," Discussion Paper 2004-130, Tilburg University, Center for Economic Research.
    4. Brooks, Chris & Burke, Simon P. & Persand, Gita, 2001. "Benchmarks and the accuracy of GARCH model estimation," International Journal of Forecasting, Elsevier, vol. 17(1), pages 45-56.
    5. Tim Bollerslev, 2008. "Glossary to ARCH (GARCH)," CREATES Research Papers 2008-49, School of Economics and Management, University of Aarhus.
    6. Charles, Amelie & Darne, Olivier, 2005. "Outliers and GARCH models in financial data," Economics Letters, Elsevier, vol. 86(3), pages 347-352, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Lists

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    Statistics

    Access and download statistics

    Corrections

    When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:26536. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Ekkehart Schlicht).

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.