IDEAS home Printed from https://ideas.repec.org/a/spr/comgts/v15y2018i3d10.1007_s10287-018-0328-7.html
   My bibliography  Save this article

Optimal insurance portfolios risk-adjusted performance through dynamic stochastic programming

Author

Listed:
  • Giorgio Consigli

    (University of Bergamo)

  • Vittorio Moriggia

    (University of Bergamo)

  • Sebastiano Vitali

    (Charles University in Prague)

  • Lorenzo Mercuri

    (University of Milan)

Abstract

The practical adoption of the Solvency II regulatory framework in 2016, together with increasing property and casualty (PC) claims in recent years and an overall reduction of treasury yields across more developed financial markets have profoundly affected traditional risk management approaches by insurance institutions. The adoption of firm-wide risk capital methodologies to monitor the companies’ overall risk exposure has further consolidated the introduction of risk-adjusted performance measures to guide the management medium and long-term strategies. Relying on a dynamic stochastic programming formulation of a 10 year asset-liability management (ALM) problem of a PC company, we analyse in this article the implications on capital allocation and risk-return trade-offs of an optimization problem developed for a global insurance company based on a pair of risk-adjusted return functions. The analysis is relevant for any institutional investor seeking a high risk-adjusted performance as for regulators in their structuring of stress-tests and effective regulatory frameworks. The introduction of the concept of risk capital, or economic capital, in the definition of medium and long term insurance strategies poses a set of modeling and methodological issues tackled in this article. Of particular interest is the study of optimal ALM policies under different assets’ correlation assumptions. From a computational viewpoint it turns out that, depending on the assumed correlation matrix, the stochastic program is linear or of second order conic type. A case study from a real-world company development is presented to highlight the effectiveness of applied stochastic programming in capturing complex risk and return dynamics arising in modern corporate finance and lead to an efficient long-term financial allocation process.

Suggested Citation

  • Giorgio Consigli & Vittorio Moriggia & Sebastiano Vitali & Lorenzo Mercuri, 2018. "Optimal insurance portfolios risk-adjusted performance through dynamic stochastic programming," Computational Management Science, Springer, vol. 15(3), pages 599-632, October.
  • Handle: RePEc:spr:comgts:v:15:y:2018:i:3:d:10.1007_s10287-018-0328-7
    DOI: 10.1007/s10287-018-0328-7
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10287-018-0328-7
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10287-018-0328-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Buch, Arne & Dorfleitner, Gregor & Wimmer, Maximilian, 2011. "Risk capital allocation for RORAC optimization," Journal of Banking & Finance, Elsevier, vol. 35(11), pages 3001-3009, November.
    2. Alessandri, Piergiorgio & Drehmann, Mathias, 2010. "An economic capital model integrating credit and interest rate risk in the banking book," Journal of Banking & Finance, Elsevier, vol. 34(4), pages 730-742, April.
    3. Giorgio Consigli & Massimo di Tria & Michele Gaffo & Gaetano Iaquinta & Vittorio Moriggia & Angelo Uristani, 2011. "Dynamic Portfolio Management for Property and Casualty Insurance," International Series in Operations Research & Management Science, in: Marida Bertocchi & Giorgio Consigli & Michael A. H. Dempster (ed.), Stochastic Optimization Methods in Finance and Energy, edition 1, chapter 0, pages 99-124, Springer.
    4. Véronique Maume-Deschamps & Didier Rullière & Khalil Said, 2015. "A risk management approach to capital allocation," Working Papers hal-01163180, HAL.
    5. Georg Ch Pflug & Werner Römisch, 2007. "Modeling, Measuring and Managing Risk," World Scientific Books, World Scientific Publishing Co. Pte. Ltd., number 6478, January.
    6. David R. Cariño & Terry Kent & David H. Myers & Celine Stacy & Mike Sylvanus & Andrew L. Turner & Kouji Watanabe & William T. Ziemba, 1994. "The Russell-Yasuda Kasai Model: An Asset/Liability Model for a Japanese Insurance Company Using Multistage Stochastic Programming," Interfaces, INFORMS, vol. 24(1), pages 29-49, February.
    7. Jitka Dupačová & Giorgio Consigli & Stein Wallace, 2000. "Scenarios for Multistage Stochastic Programs," Annals of Operations Research, Springer, vol. 100(1), pages 25-53, December.
    8. Stoughton, Neal M. & Zechner, Josef, 2007. "Optimal capital allocation using RAROC(TM) and EVA(R)," Journal of Financial Intermediation, Elsevier, vol. 16(3), pages 312-342, July.
    9. de Lange, Petter E. & Fleten, Stein-Erik & Gaivoronski, Alexei A., 2004. "Modeling financial reinsurance in the casualty insurance business via stochastic programming," Journal of Economic Dynamics and Control, Elsevier, vol. 28(5), pages 991-1012, February.
    10. Jan Dhaene & Mark Goovaerts & Rob Kaas, 2003. "Economic Capital Allocation Derived from Risk Measures," North American Actuarial Journal, Taylor & Francis Journals, vol. 7(2), pages 44-56.
    11. Dempster, M. A. H. & Germano, M. & Medova, E. A. & Villaverde, M., 2003. "Global Asset Liability Management," British Actuarial Journal, Cambridge University Press, vol. 9(1), pages 137-195, April.
    12. Giorgio Consigli & Gaetano Iaquinta & Vittorio Moriggia, 2012. "Path-dependent scenario trees for multistage stochastic programmes in finance," Quantitative Finance, Taylor & Francis Journals, vol. 12(8), pages 1265-1281, July.
    13. G. Consigli & M. Dempster, 1998. "Dynamic stochastic programmingfor asset-liability management," Annals of Operations Research, Springer, vol. 81(0), pages 131-162, June.
    14. Philippe Artzner & Freddy Delbaen & Jean‐Marc Eber & David Heath, 1999. "Coherent Measures of Risk," Mathematical Finance, Wiley Blackwell, vol. 9(3), pages 203-228, July.
    15. Buch, A. & Dorfleitner, G., 2008. "Coherent risk measures, coherent capital allocations and the gradient allocation principle," Insurance: Mathematics and Economics, Elsevier, vol. 42(1), pages 235-242, February.
    16. Crouhy, Michel & Galai, Dan & Mark, Robert, 2000. "A comparative analysis of current credit risk models," Journal of Banking & Finance, Elsevier, vol. 24(1-2), pages 59-117, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dimitris Andriosopoulos & Michalis Doumpos & Panos M. Pardalos & Constantin Zopounidis, 2019. "Computational approaches and data analytics in financial services: A literature review," Journal of the Operational Research Society, Taylor & Francis Journals, vol. 70(10), pages 1581-1599, October.
    2. Lorenzo Reus & Guillermo Alexander Sepúlveda-Hurtado, 2023. "Foreign exchange trading and management with the stochastic dual dynamic programming method," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 9(1), pages 1-38, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Buch, Arne & Dorfleitner, Gregor & Wimmer, Maximilian, 2011. "Risk capital allocation for RORAC optimization," Journal of Banking & Finance, Elsevier, vol. 35(11), pages 3001-3009, November.
    2. Wang, Wei & Xu, Huifu & Ma, Tiejun, 2023. "Optimal scenario-dependent multivariate shortfall risk measure and its application in risk capital allocation," European Journal of Operational Research, Elsevier, vol. 306(1), pages 322-347.
    3. Sebastiano Vitali & Vittorio Moriggia, 2021. "Pension fund management with investment certificates and stochastic dominance," Annals of Operations Research, Springer, vol. 299(1), pages 273-292, April.
    4. Ivan Granito & Paolo De Angelis, 2015. "Capital allocation and risk appetite under Solvency II framework," Papers 1511.02934, arXiv.org.
    5. Moriggia, Vittorio & Kopa, Miloš & Vitali, Sebastiano, 2019. "Pension fund management with hedging derivatives, stochastic dominance and nodal contamination," Omega, Elsevier, vol. 87(C), pages 127-141.
    6. Kang, Woo-Young & Poshakwale, Sunil, 2019. "A new approach to optimal capital allocation for RORAC maximization in banks," Journal of Banking & Finance, Elsevier, vol. 106(C), pages 153-165.
    7. Ferstl, Robert & Weissensteiner, Alex, 2011. "Asset-liability management under time-varying investment opportunities," Journal of Banking & Finance, Elsevier, vol. 35(1), pages 182-192, January.
    8. Maria Stefanova, 2012. "Recovery Risiko in der Kreditportfoliomodellierung," Springer Books, Springer, number 978-3-8349-4226-5, December.
    9. Kretzschmar, Gavin & McNeil, Alexander J. & Kirchner, Axel, 2010. "Integrated models of capital adequacy - Why banks are undercapitalised," Journal of Banking & Finance, Elsevier, vol. 34(12), pages 2838-2850, December.
    10. Véronique Maume-Deschamps & Didier Rullière & Khalil Said, 2014. "On capital allocation by minimizing multivariate risk indicators," Working Papers hal-01082559, HAL.
    11. Bolance, Catalina & Guillen, Montserrat & Pelican, Elena & Vernic, Raluca, 2008. "Skewed bivariate models and nonparametric estimation for the CTE risk measure," Insurance: Mathematics and Economics, Elsevier, vol. 43(3), pages 386-393, December.
    12. Sebastiano Vitali & Ruth Domínguez & Vittorio Moriggia, 2021. "Comparing stage-scenario with nodal formulation for multistage stochastic problems," 4OR, Springer, vol. 19(4), pages 613-631, December.
    13. Matthias Fischer & Thorsten Moser & Marius Pfeuffer, 2018. "A Discussion on Recent Risk Measures with Application to Credit Risk: Calculating Risk Contributions and Identifying Risk Concentrations," Risks, MDPI, vol. 6(4), pages 1-28, December.
    14. Véronique Maume-Deschamps & Didier Rullière & Khalil Said, 2016. "On a capital allocation by minimizing multivariate risk indicators," Post-Print hal-01082559, HAL.
    15. Björn Häckel, 2010. "Risikoadjustierte Wertbeiträge zur ex ante Entscheidungsunterstützung: Ein axiomatischer Ansatz," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 21(1), pages 81-108, June.
    16. Righi, Marcelo Brutti & Müller, Fernanda Maria & Moresco, Marlon Ruoso, 2020. "On a robust risk measurement approach for capital determination errors minimization," Insurance: Mathematics and Economics, Elsevier, vol. 95(C), pages 199-211.
    17. V'eronique Maume-Deschamps & Didier Rulli`ere & Khalil Said, 2015. "A risk management approach to capital allocation," Papers 1506.04125, arXiv.org.
    18. Sebastiano Vitali & Vittorio Moriggia & Miloš Kopa, 2017. "Optimal pension fund composition for an Italian private pension plan sponsor," Computational Management Science, Springer, vol. 14(1), pages 135-160, January.
    19. Kamil J. Mizgier & Joseph M. Pasia, 2016. "Multiobjective optimization of credit capital allocation in financial institutions," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 24(4), pages 801-817, December.
    20. Alexandru V. Asimit & Raluca Vernic & Riċardas Zitikis, 2013. "Evaluating Risk Measures and Capital Allocations Based on Multi-Losses Driven by a Heavy-Tailed Background Risk: The Multivariate Pareto-II Model," Risks, MDPI, vol. 1(1), pages 1-20, March.

    More about this item

    Keywords

    Property and casualty liabilities; Dynamic stochastic programming; Risk capital allocation; Return on risk-adjusted capital; Surplus investment return;
    All these keywords.

    JEL classification:

    • C44 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics - - - Operations Research; Statistical Decision Theory
    • C61 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Optimization Techniques; Programming Models; Dynamic Analysis
    • C63 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Computational Techniques
    • G11 - Financial Economics - - General Financial Markets - - - Portfolio Choice; Investment Decisions
    • G22 - Financial Economics - - Financial Institutions and Services - - - Insurance; Insurance Companies; Actuarial Studies
    • G31 - Financial Economics - - Corporate Finance and Governance - - - Capital Budgeting; Fixed Investment and Inventory Studies

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:comgts:v:15:y:2018:i:3:d:10.1007_s10287-018-0328-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.