IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1511.02934.html
   My bibliography  Save this paper

Capital allocation and risk appetite under Solvency II framework

Author

Listed:
  • Ivan Granito
  • Paolo De Angelis

Abstract

The aim of this paper is to introduce a method for computing the allocated Solvency II Capital Requirement (SCR) of each Risk which the company is exposed to, taking in account for the diversification effect among different risks. The method suggested is based on the Euler principle. We show that it has very suitable properties like coherence in the sense of Denault (2001) and RORAC compatibility, and practical implications for the companies that use the standard formula. Further, we show how this approach can be used to evaluate the underwriting and reinsurance policies and to define a measure of the Company's risk appetite, based on the capital at risk return.

Suggested Citation

  • Ivan Granito & Paolo De Angelis, 2015. "Capital allocation and risk appetite under Solvency II framework," Papers 1511.02934, arXiv.org.
  • Handle: RePEc:arx:papers:1511.02934
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1511.02934
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Véronique Maume-Deschamps & Didier Rullière & Khalil Said, 2015. "A risk management approach to capital allocation," Working Papers hal-01163180, HAL.
    2. Acerbi, Carlo & Tasche, Dirk, 2002. "On the coherence of expected shortfall," Journal of Banking & Finance, Elsevier, vol. 26(7), pages 1487-1503, July.
    3. Helmut Gründl & Hato Schmeiser, 2007. "Capital Allocation for Insurance Companies—What Good IS IT?," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 74(2), pages 301-317, June.
    4. Dirk Tasche, 2002. "Expected Shortfall and Beyond," Papers cond-mat/0203558, arXiv.org, revised Oct 2002.
    5. Jan Dhaene & Mark Goovaerts & Rob Kaas, 2003. "Economic Capital Allocation Derived from Risk Measures," North American Actuarial Journal, Taylor & Francis Journals, vol. 7(2), pages 44-56.
    6. Tasche, Dirk, 2002. "Expected shortfall and beyond," Journal of Banking & Finance, Elsevier, vol. 26(7), pages 1519-1533, July.
    7. Jan Dhaene & Andreas Tsanakas & Emiliano A. Valdez & Steven Vanduffel, 2012. "Optimal Capital Allocation Principles," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 79(1), pages 1-28, March.
    8. Philippe Artzner & Freddy Delbaen & Jean‐Marc Eber & David Heath, 1999. "Coherent Measures of Risk," Mathematical Finance, Wiley Blackwell, vol. 9(3), pages 203-228, July.
    9. Buch, A. & Dorfleitner, G., 2008. "Coherent risk measures, coherent capital allocations and the gradient allocation principle," Insurance: Mathematics and Economics, Elsevier, vol. 42(1), pages 235-242, February.
    10. Dirk Tasche, 2007. "Capital Allocation to Business Units and Sub-Portfolios: the Euler Principle," Papers 0708.2542, arXiv.org, revised Jun 2008.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dóra Balog, 2017. "Capital Allocation in the Insurance Sector," Financial and Economic Review, Magyar Nemzeti Bank (Central Bank of Hungary), vol. 16(3), pages 74-97.
    2. Joachim Paulusch, 2017. "The Solvency II Standard Formula, Linear Geometry, and Diversification," JRFM, MDPI, vol. 10(2), pages 1-12, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Buch, Arne & Dorfleitner, Gregor & Wimmer, Maximilian, 2011. "Risk capital allocation for RORAC optimization," Journal of Banking & Finance, Elsevier, vol. 35(11), pages 3001-3009, November.
    2. Buch, A. & Dorfleitner, G., 2008. "Coherent risk measures, coherent capital allocations and the gradient allocation principle," Insurance: Mathematics and Economics, Elsevier, vol. 42(1), pages 235-242, February.
    3. Albrecht, Peter, 2003. "Risk measures," Papers 03-01, Sonderforschungsbreich 504.
    4. Boonen, Tim J. & De Waegenaere, Anja & Norde, Henk, 2020. "A generalization of the Aumann–Shapley value for risk capital allocation problems," European Journal of Operational Research, Elsevier, vol. 282(1), pages 277-287.
    5. Suzanne Emmer & Marie Kratz & Dirk Tasche, 2013. "What Is the Best Risk Measure in Practice? A Comparison of Standard Measures," Working Papers hal-00921283, HAL.
    6. repec:hal:journl:hal-00921283 is not listed on IDEAS
    7. Susanne Emmer & Marie Kratz & Dirk Tasche, 2013. "What is the best risk measure in practice? A comparison of standard measures," Papers 1312.1645, arXiv.org, revised Apr 2015.
    8. Kamil J. Mizgier & Joseph M. Pasia, 2016. "Multiobjective optimization of credit capital allocation in financial institutions," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 24(4), pages 801-817, December.
    9. Matthias Fischer & Thorsten Moser & Marius Pfeuffer, 2018. "A Discussion on Recent Risk Measures with Application to Credit Risk: Calculating Risk Contributions and Identifying Risk Concentrations," Risks, MDPI, vol. 6(4), pages 1-28, December.
    10. Furman, Edward & Landsman, Zinoviy, 2010. "Multivariate Tweedie distributions and some related capital-at-risk analyses," Insurance: Mathematics and Economics, Elsevier, vol. 46(2), pages 351-361, April.
    11. Björn Häckel, 2010. "Risikoadjustierte Wertbeiträge zur ex ante Entscheidungsunterstützung: Ein axiomatischer Ansatz," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 21(1), pages 81-108, June.
    12. Wang, Wei & Xu, Huifu & Ma, Tiejun, 2023. "Optimal scenario-dependent multivariate shortfall risk measure and its application in risk capital allocation," European Journal of Operational Research, Elsevier, vol. 306(1), pages 322-347.
    13. Ibragimov, Rustam & Walden, Johan, 2007. "The limits of diversification when losses may be large," Scholarly Articles 2624460, Harvard University Department of Economics.
    14. Alexandre Kurth & Dirk Tasche, 2002. "Credit Risk Contributions to Value-at-Risk and Expected Shortfall," Papers cond-mat/0207750, arXiv.org, revised Nov 2002.
    15. Dominique Guegan & Bertrand K Hassani, 2014. "Distortion Risk Measures or the Transformation of Unimodal Distributions into Multimodal Functions," Documents de travail du Centre d'Economie de la Sorbonne 14008, Université Panthéon-Sorbonne (Paris 1), Centre d'Economie de la Sorbonne.
    16. Wächter, Hans Peter & Mazzoni, Thomas, 2013. "Consistent modeling of risk averse behavior with spectral risk measures," European Journal of Operational Research, Elsevier, vol. 229(2), pages 487-495.
    17. Gordy, Michael B., 2003. "A risk-factor model foundation for ratings-based bank capital rules," Journal of Financial Intermediation, Elsevier, vol. 12(3), pages 199-232, July.
    18. Marcelo Brutti Righi & Paulo Sergio Ceretta, 2015. "Shortfall Deviation Risk: An alternative to risk measurement," Papers 1501.02007, arXiv.org, revised May 2016.
    19. Joaquin, Domingo Castelo, 2009. "Value at risk: Is a theoretically consistent axiomatic formulation possible?," The Quarterly Review of Economics and Finance, Elsevier, vol. 49(2), pages 725-729, May.
    20. Kang, Woo-Young & Poshakwale, Sunil, 2019. "A new approach to optimal capital allocation for RORAC maximization in banks," Journal of Banking & Finance, Elsevier, vol. 106(C), pages 153-165.
    21. Stephen J. Mildenhall, 2017. "Actuarial Geometry," Risks, MDPI, vol. 5(2), pages 1-44, June.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1511.02934. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.