IDEAS home Printed from https://ideas.repec.org/a/gam/jrisks/v5y2017i2p31-d101685.html
   My bibliography  Save this article

Actuarial Geometry

Author

Listed:
  • Stephen J. Mildenhall

    (St. John’s University, Peter J. Tobin College of Business, 101 Astor Place, New York, NY 10003, USA)

Abstract

The literature on capital allocation is biased towards an asset modeling framework rather than an actuarial framework. The asset modeling framework leads to the proliferation of inappropriate assumptions about the effect of insurance line of business growth on aggregate loss distributions. This paper explains why an actuarial analog of the asset volume/return model should be based on a Lévy process. It discusses the impact of different loss models on marginal capital allocations. It shows that Lévy process-based models provide a better fit to the US statutory accounting data, and identifies how parameter risk scales with volume and increases with time. Finally, it shows the data suggest a surprising result regarding the form of insurance parameter risk.

Suggested Citation

  • Stephen J. Mildenhall, 2017. "Actuarial Geometry," Risks, MDPI, vol. 5(2), pages 1-44, June.
  • Handle: RePEc:gam:jrisks:v:5:y:2017:i:2:p:31-:d:101685
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-9091/5/2/31/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-9091/5/2/31/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kenneth A. Froot, 2007. "Risk Management, Capital Budgeting, and Capital Structure Policy for Insurers and Reinsurers," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 74(2), pages 273-299, June.
    2. Delbaen, F. & Haezendonck, J., 1989. "A martingale approach to premium calculation principles in an arbitrage free market," Insurance: Mathematics and Economics, Elsevier, vol. 8(4), pages 269-277, December.
    3. Roger J. A. Laeven & Mitja Stadje, 2013. "Entropy Coherent and Entropy Convex Measures of Risk," Mathematics of Operations Research, INFORMS, vol. 38(2), pages 265-293, May.
    4. Cummins, J David, 1988. " Risk-Based Premiums for Insurance Guaranty Funds," Journal of Finance, American Finance Association, vol. 43(4), pages 823-839, September.
    5. Venter, Gary G. & Major, John A. & Kreps, Rodney E., 2006. "Marginal Decomposition of Risk Measures," ASTIN Bulletin, Cambridge University Press, vol. 36(2), pages 375-413, November.
    6. Fischer, T., 2003. "Risk capital allocation by coherent risk measures based on one-sided moments," Insurance: Mathematics and Economics, Elsevier, vol. 32(1), pages 135-146, February.
    7. Helmut Gründl & Hato Schmeiser, 2007. "Capital Allocation for Insurance Companies—What Good IS IT?," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 74(2), pages 301-317, June.
    8. Froot, Kenneth A. & Stein, Jeremy C., 1998. "Risk management, capital budgeting, and capital structure policy for financial institutions: an integrated approach," Journal of Financial Economics, Elsevier, vol. 47(1), pages 55-82, January.
    9. Froot, Kenneth A & Scharfstein, David S & Stein, Jeremy C, 1993. "Risk Management: Coordinating Corporate Investment and Financing Policies," Journal of Finance, American Finance Association, vol. 48(5), pages 1629-1658, December.
    10. J. David Cummins, 2000. "Allocation of Capital in the Insurance Industry," Risk Management and Insurance Review, American Risk and Insurance Association, vol. 3(1), pages 7-27, March.
    11. J. Dhaene & S. Vanduffel & M. Goovaerts, 2007. "Comonotonicity," Review of Business and Economic Literature, KU Leuven, Faculty of Economics and Business (FEB), Review of Business and Economic Literature, vol. 0(2), pages 265-278.
    12. Michael Powers, 2007. "Using Aumann-Shapley Values to Allocate Insurance Risk," North American Actuarial Journal, Taylor & Francis Journals, vol. 11(3), pages 113-127.
    13. Michael Sherris, 2006. "Solvency, Capital Allocation, and Fair Rate of Return in Insurance," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 73(1), pages 71-96, March.
    14. Erel, Isil & Myers, Stewart C. & Read, James A., 2015. "A theory of risk capital," Journal of Financial Economics, Elsevier, vol. 118(3), pages 620-635.
    15. Zanjani, George, 2002. "Pricing and capital allocation in catastrophe insurance," Journal of Financial Economics, Elsevier, vol. 65(2), pages 283-305, August.
    16. Jan Dhaene & Mark Goovaerts & Rob Kaas, 2003. "Economic Capital Allocation Derived from Risk Measures," North American Actuarial Journal, Taylor & Francis Journals, vol. 7(2), pages 44-56.
    17. Michael Kalkbrener, 2005. "An Axiomatic Approach To Capital Allocation," Mathematical Finance, Wiley Blackwell, vol. 15(3), pages 425-437, July.
    18. Boonen, Tim J. & Tsanakas, Andreas & Wüthrich, Mario V., 2017. "Capital allocation for portfolios with non-linear risk aggregation," Insurance: Mathematics and Economics, Elsevier, vol. 72(C), pages 95-106.
    19. Doherty, Neil A & Garven, James R, 1986. "Price Regulation in Property-Liability Insurance: A Contingent-Claims Approach," Journal of Finance, American Finance Association, vol. 41(5), pages 1031-1050, December.
    20. Froot, Kenneth A. & O'Connell, Paul G.J., 2008. "On the pricing of intermediated risks: Theory and application to catastrophe reinsurance," Journal of Banking & Finance, Elsevier, vol. 32(1), pages 69-85, January.
    21. Tsanakas, Andreas, 2009. "To split or not to split: Capital allocation with convex risk measures," Insurance: Mathematics and Economics, Elsevier, vol. 44(2), pages 268-277, April.
    22. Jan Dhaene & Andreas Tsanakas & Emiliano A. Valdez & Steven Vanduffel, 2012. "Optimal Capital Allocation Principles," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 79(1), pages 1-28, March.
    23. Goovaerts, Marc J. & Kaas, Rob & Laeven, Roger J.A., 2010. "Decision principles derived from risk measures," Insurance: Mathematics and Economics, Elsevier, vol. 47(3), pages 294-302, December.
    24. Buch, A. & Dorfleitner, G., 2008. "Coherent risk measures, coherent capital allocations and the gradient allocation principle," Insurance: Mathematics and Economics, Elsevier, vol. 42(1), pages 235-242, February.
    25. George Zanjani, 2010. "An Economic Approach to Capital Allocation," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 77(3), pages 523-549, September.
    26. Stephen Mildenhall, 2004. "A Note on the Myers and Read Capital Allocation Formula," North American Actuarial Journal, Taylor & Francis Journals, vol. 8(2), pages 32-44.
    27. Furman, Edward & Zitikis, Ricardas, 2008. "Weighted risk capital allocations," Insurance: Mathematics and Economics, Elsevier, vol. 43(2), pages 263-269, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dionne, Georges & Harrington, Scott, 2017. "Insurance and Insurance Markets," Working Papers 17-2, HEC Montreal, Canada Research Chair in Risk Management.
    2. van Gulick, Gerwald & De Waegenaere, Anja & Norde, Henk, 2012. "Excess based allocation of risk capital," Insurance: Mathematics and Economics, Elsevier, vol. 50(1), pages 26-42.
    3. Wang, Wei & Xu, Huifu & Ma, Tiejun, 2023. "Optimal scenario-dependent multivariate shortfall risk measure and its application in risk capital allocation," European Journal of Operational Research, Elsevier, vol. 306(1), pages 322-347.
    4. John A. Major & Stephen J. Mildenhall, 2020. "Pricing and Capital Allocation for Multiline Insurance Firms With Finite Assets in an Imperfect Market," Papers 2008.12427, arXiv.org.
    5. Daniel Bauer & George Zanjani, 2016. "The Marginal Cost of Risk, Risk Measures, and Capital Allocation," Management Science, INFORMS, vol. 62(5), pages 1431-1457, May.
    6. van Gulick, G. & De Waegenaere, A.M.B. & Norde, H.W., 2010. "Excess Based Allocation of Risk Capital," Other publications TiSEM f9231521-fea7-4524-8fea-8, Tilburg University, School of Economics and Management.
    7. Gómez, Fabio & Tang, Qihe & Tong, Zhiwei, 2022. "The gradient allocation principle based on the higher moment risk measure," Journal of Banking & Finance, Elsevier, vol. 143(C).
    8. Björn Häckel, 2010. "Risikoadjustierte Wertbeiträge zur ex ante Entscheidungsunterstützung: Ein axiomatischer Ansatz," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 21(1), pages 81-108, June.
    9. George Zanjani, 2010. "An Economic Approach to Capital Allocation," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 77(3), pages 523-549, September.
    10. Boonen, Tim J. & De Waegenaere, Anja & Norde, Henk, 2020. "A generalization of the Aumann–Shapley value for risk capital allocation problems," European Journal of Operational Research, Elsevier, vol. 282(1), pages 277-287.
    11. Kang, Woo-Young & Poshakwale, Sunil, 2019. "A new approach to optimal capital allocation for RORAC maximization in banks," Journal of Banking & Finance, Elsevier, vol. 106(C), pages 153-165.
    12. Hirbod Assa & Manuel Morales & Hassan Omidi Firouzi, 2016. "On the Capital Allocation Problem for a New Coherent Risk Measure in Collective Risk Theory," Risks, MDPI, vol. 4(3), pages 1-20, August.
    13. Jaume Belles-Sampera & Montserrat Guillen & Miguel Santolino, 2023. "Haircut Capital Allocation as the Solution of a Quadratic Optimisation Problem," Mathematics, MDPI, vol. 11(18), pages 1-17, September.
    14. Kim, Joseph H.T. & Hardy, Mary R., 2009. "A capital allocation based on a solvency exchange option," Insurance: Mathematics and Economics, Elsevier, vol. 44(3), pages 357-366, June.
    15. Gibson, Rajna & Habib, Michel A. & Ziegler, Alexandre, 2014. "Reinsurance or securitization: The case of natural catastrophe risk," Journal of Mathematical Economics, Elsevier, vol. 53(C), pages 79-100.
    16. Grechuk, Bogdan, 2023. "Extended gradient of convex function and capital allocation," European Journal of Operational Research, Elsevier, vol. 305(1), pages 429-437.
    17. Jilber Urbina & Miguel Santolino & Montserrat Guillen, 2021. "Covariance Principle for Capital Allocation: A Time-Varying Approach," Mathematics, MDPI, vol. 9(16), pages 1-13, August.
    18. Cheung, Eric C.K. & Peralta, Oscar & Woo, Jae-Kyung, 2022. "Multivariate matrix-exponential affine mixtures and their applications in risk theory," Insurance: Mathematics and Economics, Elsevier, vol. 106(C), pages 364-389.
    19. Schlütter, Sebastian, 2011. "The role of frictional costs for insurance pricing and insurer default risk," ICIR Working Paper Series 07/11, Goethe University Frankfurt, International Center for Insurance Regulation (ICIR).
    20. Eric C. K. Cheung & Oscar Peralta & Jae-Kyung Woo, 2021. "Multivariate matrix-exponential affine mixtures and their applications in risk theory," Papers 2201.11122, arXiv.org.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jrisks:v:5:y:2017:i:2:p:31-:d:101685. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.