IDEAS home Printed from https://ideas.repec.org/a/spr/climat/v168y2021i3d10.1007_s10584-021-03223-9.html
   My bibliography  Save this article

Sensitivity of soybean planting date to wet season onset in Mato Grosso, Brazil, and implications under climate change

Author

Listed:
  • Minghui Zhang

    (University of California)

  • Gabriel Abrahao

    (Federal University of Vicosa)

  • Sally Thompson

    (University of California
    University of Western Australia)

Abstract

Crop planting dates control the yield and cropping intensity of rainfed agriculture, and modifying planting dates can be a major adaptation strategy under climate change. However, shifts in rainfall seasonality may constrain farmers’ ability to adapt planting dates, and imperfect knowledge of how farmers currently select planting dates makes it difficult to predict how adaptations will proceed. This study analyzes variations in soybean planting and wet season onset dates across the agricultural state of Mato Grosso (MT), Brazil, for 2004 to 2014. It starts by exploring the strength of relationships between planting date and several precipitation-based definitions of the wet season onset, and shows that planting date is better correlated to easily observed onset definitions based on rainfall frequency than to climatological definitions. Next, a regression analysis shows that the sensitivity of planting dates to wet season onset exhibits large variations with cropping intensity and across farm fields, and that planting dates trended earlier over the study period, independently of onset variations. Finally, the results are used to predict soy planting dates in Mato Grosso under the RCP 8.5 climate scenario. Predictions show that planting dates will likely become delayed relative to preferred times, and that this may preclude double cropping in some parts of the state. This study demonstrates that the simple assumptions about farmers’ behavior often used in agricultural forecasting omit important spatio-temporal variations. Improved understanding of planting choices can reduce uncertainty in projected agricultural responses to climate change and highlight important areas for policy and agronomic adaptation.

Suggested Citation

  • Minghui Zhang & Gabriel Abrahao & Sally Thompson, 2021. "Sensitivity of soybean planting date to wet season onset in Mato Grosso, Brazil, and implications under climate change," Climatic Change, Springer, vol. 168(3), pages 1-28, October.
  • Handle: RePEc:spr:climat:v:168:y:2021:i:3:d:10.1007_s10584-021-03223-9
    DOI: 10.1007/s10584-021-03223-9
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10584-021-03223-9
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10584-021-03223-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hampf, Anna C. & Stella, Tommaso & Berg-Mohnicke, Michael & Kawohl, Tobias & Kilian, Markus & Nendel, Claas, 2020. "Future yields of double-cropping systems in the Southern Amazon, Brazil, under climate change and technological development," Agricultural Systems, Elsevier, vol. 177(C).
    2. Diego Herrera & Alexander Pfaff & Juan Robalino, 2019. "Impacts of protected areas vary with the level of government: Comparing avoided deforestation across agencies in the Brazilian Amazon," Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, vol. 116(30), pages 14916-14925, July.
    3. Avery S. Cohn & Leah K. VanWey & Stephanie A. Spera & John F. Mustard, 2016. "Cropping frequency and area response to climate variability can exceed yield response," Nature Climate Change, Nature, vol. 6(6), pages 601-604, June.
    4. Rebecca Lima Albuquerque Maranhão & Osmar Abílio de Carvalho Júnior & Potira Meirelles Hermuche & Roberto Arnaldo Trancoso Gomes & Concepta Margaret McManus Pimentel & Renato Fontes Guimarães, 2019. "The Spatiotemporal Dynamics of Soybean and Cattle Production in Brazil," Sustainability, MDPI, vol. 11(7), pages 1-13, April.
    5. Jeff Tollefson, 2016. "Political upheaval threatens Brazil’s environmental protections," Nature, Nature, vol. 539(7628), pages 147-148, November.
    6. Pedro R. R. Rochedo & Britaldo Soares-Filho & Roberto Schaeffer & Eduardo Viola & Alexandre Szklo & André F. P. Lucena & Alexandre Koberle & Juliana Leroy Davis & Raoni Rajão & Regis Rathmann, 2018. "The threat of political bargaining to climate mitigation in Brazil," Nature Climate Change, Nature, vol. 8(8), pages 695-698, August.
    7. Oecd, 2009. "Climate Change and Africa," OECD Journal: General Papers, OECD Publishing, vol. 2009(1), pages 5-35.
    8. Khanal, Uttam & Wilson, Clevo & Hoang, Viet-Ngu & Lee, Boon, 2018. "Farmers' Adaptation to Climate Change, Its Determinants and Impacts on Rice Yield in Nepal," Ecological Economics, Elsevier, vol. 144(C), pages 139-147.
    9. Jonathan A. Foley & Navin Ramankutty & Kate A. Brauman & Emily S. Cassidy & James S. Gerber & Matt Johnston & Nathaniel D. Mueller & Christine O’Connell & Deepak K. Ray & Paul C. West & Christian Balz, 2011. "Solutions for a cultivated planet," Nature, Nature, vol. 478(7369), pages 337-342, October.
    10. Hassan, Rashid M. & Nhemachena, Charles, 2008. "Determinants of African farmers’ strategies for adapting to climate change: Multinomial choice analysis," African Journal of Agricultural and Resource Economics, African Association of Agricultural Economists, vol. 2(1), pages 1-22, March.
    11. B. Fosu-Mensah & P. Vlek & D. MacCarthy, 2012. "Farmers’ perception and adaptation to climate change: a case study of Sekyedumase district in Ghana," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 14(4), pages 495-505, August.
    12. Rada, Nicholas E. & Valdes, Constanza, 2012. "Policy, Technology, and Efficiency of Brazilian Agriculture," Economic Research Report 127498, United States Department of Agriculture, Economic Research Service.
    13. A. J. Challinor & J. Watson & D. B. Lobell & S. M. Howden & D. R. Smith & N. Chhetri, 2014. "A meta-analysis of crop yield under climate change and adaptation," Nature Climate Change, Nature, vol. 4(4), pages 287-291, April.
    14. Borchers, Allison & Truex-Powell, Elizabeth & Wallander, Steven & Nickerson, Cynthia, 2014. "Multi-Cropping Practices: Recent Trends in Double-Cropping," Economic Information Bulletin 262122, United States Department of Agriculture, Economic Research Service.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Khanal, Uttam & Wilson, Clevo & Hoang, Vincent & Lee, Boon, 2015. "Autonomous adaptations to climate change and rice productivity: a case study of the Tanahun district, Nepal," MPRA Paper 106916, University Library of Munich, Germany.
    2. Khanal, Uttam & Wilson, Clevo & Rahman, Sanzidur & Lee, Boon & Hoang, Vincent, 2020. "Smallholder farmers’ adaptation to climate change and its potential contribution to UN’s sustainable development goals of zero hunger and no poverty," MPRA Paper 106917, University Library of Munich, Germany, revised 07 Sep 2020.
    3. Mustafa, Ghulam & Latif, Ismail Abd & Ashfaq, Muhammad & Bashir, Muhammad Khalid & Shamsudin, Mad Nasir & Wan Daud, Wan Mohamed Noordin, 2017. "Adaptation Process To Climate Change In Agriculture- An Empirical Study," International Journal of Food and Agricultural Economics (IJFAEC), Alanya Alaaddin Keykubat University, Department of Economics and Finance, vol. 5(4), October.
    4. Etwire, Prince Maxwell, 2020. "The impact of climate change on farming system selection in Ghana," Agricultural Systems, Elsevier, vol. 179(C).
    5. Suresh, Kanesh & Khanal, Uttam & Wilson, Clevo & Managi, Shunsuke & Quayle, Annette & Santhirakumar, Samithamby, 2021. "An economic analysis of agricultural adaptation to climate change impacts in Sri Lanka: An endogenous switching regression analysis," Land Use Policy, Elsevier, vol. 109(C).
    6. Chepkoech, Winifred & Stöber, Silke & Kurgat, Barnabas K. & Bett, Hillary K. & Mungai, Nancy W. & Lotze-Campen, Hermann, 2023. "What drives diversity in climate change adaptation strategies for African indigenous vegetable production in Kenya?," Economic Analysis and Policy, Elsevier, vol. 77(C), pages 716-728.
    7. Monica Fisher & Tsedeke Abate & Rodney Lunduka & Woinishet Asnake & Yoseph Alemayehu & Ruth Madulu, 2015. "Drought tolerant maize for farmer adaptation to drought in sub-Saharan Africa: Determinants of adoption in eastern and southern Africa," Climatic Change, Springer, vol. 133(2), pages 283-299, November.
    8. Isaure Delaporte & Mathilde Maurel, 2018. "Adaptation to climate change in Bangladesh," Climate Policy, Taylor & Francis Journals, vol. 18(1), pages 49-62, January.
    9. Richard Kofi Asravor, 2022. "On-farm adaptation strategies to climate change: the case of smallholder farmers in the Northern Development Authority Zone of Ghana," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(4), pages 5080-5093, April.
    10. Robert Becker Pickson & Ge He, 2021. "Smallholder Farmers’ Perceptions, Adaptation Constraints, and Determinants of Adaptive Capacity to Climate Change in Chengdu," SAGE Open, , vol. 11(3), pages 21582440211, July.
    11. Moh. Shadiqur Rahman & Hery Toiba & Wen-Chi Huang, 2021. "The Impact of Climate Change Adaptation Strategies on Income and Food Security: Empirical Evidence from Small-Scale Fishers in Indonesia," Sustainability, MDPI, vol. 13(14), pages 1-16, July.
    12. Flach, Rafaela & Abrahão, Gabriel & Bryant, Benjamin & Scarabello, Marluce & Soterroni, Aline C. & Ramos, Fernando M. & Valin, Hugo & Obersteiner, Michael & Cohn, Avery S., 2021. "Conserving the Cerrado and Amazon biomes of Brazil protects the soy economy from damaging warming," World Development, Elsevier, vol. 146(C).
    13. Nhemachena, Charles & Matchaya, Greenwell & Nhlengethwa, Sibusiso & Nhemachena, C. R., . "Exploring ways to increase public investments in agricultural water management and irrigation for improved agricultural productivity in Southern Africa," Papers published in Journals (Open Access), International Water Management Institute, pages 44(3):474-4.
    14. Giuseppe Maggio & Marina Mastrorillo & Nicholas J. Sitko, 2022. "Adapting to High Temperatures: Effect of Farm Practices and Their Adoption Duration on Total Value of Crop Production in Uganda," American Journal of Agricultural Economics, John Wiley & Sons, vol. 104(1), pages 385-403, January.
    15. Cook, Aaron M. & Ricker-Gilbert, Jacob E. & Sesmero, Juan P., 2013. "How do African households adapt to climate change? Evidence from Malawi," 2013 Annual Meeting, August 4-6, 2013, Washington, D.C. 150507, Agricultural and Applied Economics Association.
    16. Jawid, Asadullah & Khadjavi, Menusch, 2019. "Adaptation to climate change in Afghanistan: Evidence on the impact of external interventions," Economic Analysis and Policy, Elsevier, vol. 64(C), pages 64-82.
    17. Nyadzi, Emmanuel, 2016. "Climate Variability Since 1970 and Farmers’ Observations in Northern Ghana," Sustainable Agriculture Research, Canadian Center of Science and Education, vol. 5(2).
    18. Alejandro del Pozo & Nidia Brunel-Saldias & Alejandra Engler & Samuel Ortega-Farias & Cesar Acevedo-Opazo & Gustavo A. Lobos & Roberto Jara-Rojas & Marco A. Molina-Montenegro, 2019. "Climate Change Impacts and Adaptation Strategies of Agriculture in Mediterranean-Climate Regions (MCRs)," Sustainability, MDPI, vol. 11(10), pages 1-16, May.
    19. Basanta Paudel & Yili Zhang & Jianzhong Yan & Raju Rai & Lanhui Li & Xue Wu & Prem Sagar Chapagain & Narendra Raj Khanal, 2020. "Farmers’ understanding of climate change in Nepal Himalayas: important determinants and implications for developing adaptation strategies," Climatic Change, Springer, vol. 158(3), pages 485-502, February.
    20. Di Falco, Salvatore & Sharma, Sindra, 2018. "Investing in Climate Change Adaptation: Motivations and Green Incentives in the Fiji Islands," Ecological Economics, Elsevier, vol. 154(C), pages 394-408.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:climat:v:168:y:2021:i:3:d:10.1007_s10584-021-03223-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.