IDEAS home Printed from https://ideas.repec.org/a/spr/climat/v117y2013i1p163-179.html
   My bibliography  Save this article

Spatial impact of projected changes in rainfall and temperature on wheat yields in Australia

Author

Listed:
  • A. Potgieter
  • H. Meinke
  • A. Doherty
  • V. Sadras
  • G. Hammer
  • S. Crimp
  • D. Rodriguez

Abstract

Climate projections over the next two to four decades indicate that most of Australia’s wheat-belt is likely to become warmer and drier. Here we used a shire scale, dynamic stress-index model that accounts for the impacts of rainfall and temperature on wheat yield, and a range of climate change projections from global circulation models to spatially estimate yield changes assuming no adaptation and no CO 2 fertilisation effects. We modelled five scenarios, a baseline climate (climatology, 1901–2007), and two emission scenarios (“low” and “high” CO 2 ) for two time horizons, namely 2020 and 2050. The potential benefits from CO 2 fertilisation were analysed separately using a point level functional simulation model. Irrespective of the emissions scenario, the 2020 projection showed negligible changes in the modelled yield relative to baseline climate, both using the shire or functional point scale models. For the 2050-high emissions scenario, changes in modelled yield relative to the baseline ranged from −5 % to +6 % across most of Western Australia, parts of Victoria and southern New South Wales, and from −5 to −30 % in northern NSW, Queensland and the drier environments of Victoria, South Australia and in-land Western Australia. Taking into account CO 2 fertilisation effects across a North–south transect through eastern Australia cancelled most of the yield reductions associated with increased temperatures and reduced rainfall by 2020, and attenuated the expected yield reductions by 2050. Copyright Springer Science+Business Media B.V. 2013

Suggested Citation

  • A. Potgieter & H. Meinke & A. Doherty & V. Sadras & G. Hammer & S. Crimp & D. Rodriguez, 2013. "Spatial impact of projected changes in rainfall and temperature on wheat yields in Australia," Climatic Change, Springer, vol. 117(1), pages 163-179, March.
  • Handle: RePEc:spr:climat:v:117:y:2013:i:1:p:163-179
    DOI: 10.1007/s10584-012-0543-0
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10584-012-0543-0
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10584-012-0543-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ludwig, Fulco & Asseng, Senthold, 2010. "Potential benefits of early vigor and changes in phenology in wheat to adapt to warmer and drier climates," Agricultural Systems, Elsevier, vol. 103(3), pages 127-136, March.
    2. Fulco Ludwig & Stephen Milroy & Senthold Asseng, 2009. "Impacts of recent climate change on wheat production systems in Western Australia," Climatic Change, Springer, vol. 92(3), pages 495-517, February.
    3. Ludwig, Fulco & Asseng, Senthold, 2006. "Climate change impacts on wheat production in a Mediterranean environment in Western Australia," Agricultural Systems, Elsevier, vol. 90(1-3), pages 159-179, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Brett A Bryan & Jianjun Huai & Jeff Connor & Lei Gao & Darran King & John Kandulu & Gang Zhao, 2015. "What Actually Confers Adaptive Capacity? Insights from Agro-Climatic Vulnerability of Australian Wheat," PLOS ONE, Public Library of Science, vol. 10(2), pages 1-20, February.
    2. Thamo, Tas & Addai, Donkor & Kragt, Marit E. & Kingwell, Ross S. & Pannell, David J. & Robertson, Michael J., 2019. "Climate change reduces the mitigation obtainable from sequestration in an Australian farming system," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 63(4), October.
    3. De Li Liu & Garry J. O’Leary & Brendan Christy & Ian Macadam & Bin Wang & Muhuddin R. Anwar & Anna Weeks, 2017. "Effects of different climate downscaling methods on the assessment of climate change impacts on wheat cropping systems," Climatic Change, Springer, vol. 144(4), pages 687-701, October.
    4. Meng, Ting & Carew, Richard C. & Florkowski, Wojciech J. & Klepacka, Anna M., 2016. "Modeling Temperature and Precipitation Influences on Yield Distributions of Canola and Spring Wheat in Saskatchewan," 2016 Annual Meeting, July 31-August 2, Boston, Massachusetts 235251, Agricultural and Applied Economics Association.
    5. Ibrahim M. A. Soliman, 2019. "Forecasting Model of Wheat Yield in Relation to Rainfall Variability in North Africa Countries," International Journal of Food and Beverage Manufacturing and Business Models (IJFBMBM), IGI Global, vol. 4(2), pages 1-17, July.
    6. Anwar, Muhuddin Rajin & Liu, De Li & Farquharson, Robert & Macadam, Ian & Abadi, Amir & Finlayson, John & Wang, Bin & Ramilan, Thiagarajah, 2015. "Climate change impacts on phenology and yields of five broadacre crops at four climatologically distinct locations in Australia," Agricultural Systems, Elsevier, vol. 132(C), pages 133-144.
    7. Puyu Feng & Bin Wang & De Li Liu & Hongtao Xing & Fei Ji & Ian Macadam & Hongyan Ruan & Qiang Yu, 2018. "Impacts of rainfall extremes on wheat yield in semi-arid cropping systems in eastern Australia," Climatic Change, Springer, vol. 147(3), pages 555-569, April.
    8. Allyson Williams & Neil White & Shahbaz Mushtaq & Geoff Cockfield & Brendan Power & Louis Kouadio, 2015. "Quantifying the response of cotton production in eastern Australia to climate change," Climatic Change, Springer, vol. 129(1), pages 183-196, March.
    9. Abbas Ali Chandio & Waqar Akram & Uzma Bashir & Fayyaz Ahmad & Sultan Adeel & Yuansheng Jiang, 2023. "Sustainable maize production and climatic change in Nepal: robust role of climatic and non-climatic factors in the long-run and short-run," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(2), pages 1614-1644, February.
    10. Kamini Yadav & Hatim M. E. Geli, 2021. "Prediction of Crop Yield for New Mexico Based on Climate and Remote Sensing Data for the 1920–2019 Period," Land, MDPI, vol. 10(12), pages 1-27, December.
    11. David H. Cobon & Allyson A. J. Williams & Brendan Power & David McRae & Peter Davis, 2016. "Risk matrix approach useful in adapting agriculture to climate change," Climatic Change, Springer, vol. 138(1), pages 173-189, September.
    12. Sajjad Ali & Liu Ying & Tariq Shah & Azam Tariq & Abbas Ali Chandio & Ihsan Ali, 2019. "Analysis of the Nexus of CO 2 Emissions, Economic Growth, Land under Cereal Crops and Agriculture Value-Added in Pakistan Using an ARDL Approach," Energies, MDPI, vol. 12(23), pages 1-18, December.
    13. Kingwell, Ross & Islam, Nazrul & Xayavong, Vilaphonh, 2020. "Farming systems and their business strategies in south-western Australia: A decadal assessment of their profitability," Agricultural Systems, Elsevier, vol. 181(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Anwar, Muhuddin Rajin & Liu, De Li & Farquharson, Robert & Macadam, Ian & Abadi, Amir & Finlayson, John & Wang, Bin & Ramilan, Thiagarajah, 2015. "Climate change impacts on phenology and yields of five broadacre crops at four climatologically distinct locations in Australia," Agricultural Systems, Elsevier, vol. 132(C), pages 133-144.
    2. Senthold Asseng & David Pannell, 2013. "Adapting dryland agriculture to climate change: Farming implications and research and development needs in Western Australia," Climatic Change, Springer, vol. 118(2), pages 167-181, May.
    3. Senthold Asseng & Maria Travasso & Fulco Ludwig & Graciela Magrin, 2013. "Has climate change opened new opportunities for wheat cropping in Argentina?," Climatic Change, Springer, vol. 117(1), pages 181-196, March.
    4. Katharina Waha & John Clarke & Kavina Dayal & Mandy Freund & Craig Heady & Irene Parisi & Elisabeth Vogel, 2022. "Past and future rainfall changes in the Australian midlatitudes and implications for agriculture," Climatic Change, Springer, vol. 170(3), pages 1-21, February.
    5. Tas Thamo & Donkor Addai & Marit E. Kragt & Ross S. Kingwell & David J. Pannell & Michael J. Robertson, 2019. "Climate change reduces the mitigation obtainable from sequestration in an Australian farming system," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 63(4), pages 841-865, October.
    6. Ahmad, Munir & Nawaz, Muhammad & Iqbal, Muhammad & Javed, Sajid, 2014. "Analysing the Impact of Climate Change on Rice Productivity in Pakistan," MPRA Paper 72861, University Library of Munich, Germany.
    7. Asseng, S. & Dray, A. & Perez, P. & Su, X., 2010. "Rainfall–human–spatial interactions in a salinity-prone agricultural region of the Western Australian wheat-belt," Ecological Modelling, Elsevier, vol. 221(5), pages 812-824.
    8. Thamo, Tas & Addai, Donkor & Pannell, David J. & Robertson, Michael J. & Thomas, Dean T. & Young, John M., 2017. "Climate change impacts and farm-level adaptation: Economic analysis of a mixed cropping–livestock system," Agricultural Systems, Elsevier, vol. 150(C), pages 99-108.
    9. Kothari, Kritika & Ale, Srinivasulu & Attia, Ahmed & Rajan, Nithya & Xue, Qingwu & Munster, Clyde L., 2019. "Potential climate change adaptation strategies for winter wheat production in the Texas High Plains," Agricultural Water Management, Elsevier, vol. 225(C).
    10. Ahmad, Munir & Siftain, Hassan & Iqbal, Muhammad, 2014. "Impact of Climate Change on Wheat Productivity in Pakistan: A District Level Analysis," MPRA Paper 72859, University Library of Munich, Germany.
    11. Shahbaz Bhatti & Sarfraz Hassan & Khalid Mushtaq & Kamran Javed, 2020. "Investigation The Impact Of Climate Change On Productivity Of Cotton: Empirical Evidence From Cotton Zone," Big Data In Agriculture (BDA), Zibeline International Publishing, vol. 2(1), pages 1-4, February.
    12. Ludwig, Fulco & Asseng, Senthold, 2010. "Potential benefits of early vigor and changes in phenology in wheat to adapt to warmer and drier climates," Agricultural Systems, Elsevier, vol. 103(3), pages 127-136, March.
    13. Taylor, Chris & Cullen, Brendan & D'Occhio, Michael & Rickards, Lauren & Eckard, Richard, 2018. "Trends in wheat yields under representative climate futures: Implications for climate adaptation," Agricultural Systems, Elsevier, vol. 164(C), pages 1-10.
    14. Ross Kingwell, 2021. "Making Agriculture Carbon Neutral Amid a Changing Climate: The Case of South-Western Australia," Land, MDPI, vol. 10(11), pages 1-20, November.
    15. Andi Syah Putra & Guangji Tong & Didit Okta Pribadi, 2020. "Spatial Analysis of Socio-Economic Driving Factors of Food Expenditure Variation between Provinces in Indonesia," Sustainability, MDPI, vol. 12(4), pages 1-18, February.
    16. Dobes Leo & Jotzo Frank & Stern David I., 2014. "The Economics of Global Climate Change: A Historical Literature Review," Review of Economics, De Gruyter, vol. 65(3), pages 281-320, December.
    17. Hasibuan, Abdul Muis & Gregg, Daniel & Stringer, Randy, 2020. "Accounting for diverse risk attitudes in measures of risk perceptions: A case study of climate change risk for small-scale citrus farmers in Indonesia," Land Use Policy, Elsevier, vol. 95(C).
    18. Chao Chen & Walter Baethgen & Andrew Robertson, 2013. "Contributions of individual variation in temperature, solar radiation and precipitation to crop yield in the North China Plain, 1961–2003," Climatic Change, Springer, vol. 116(3), pages 767-788, February.
    19. Mohammad Bannayan & Ehsan Eyshi Rezaei, 2014. "Future production of rainfed wheat in Iran (Khorasan province): climate change scenario analysis," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 19(2), pages 211-227, February.
    20. Oliver, Yvette M. & Robertson, Michael J. & Weeks, Cameron, 2010. "A new look at an old practice: Benefits from soil water accumulation in long fallows under Mediterranean conditions," Agricultural Water Management, Elsevier, vol. 98(2), pages 291-300, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:climat:v:117:y:2013:i:1:p:163-179. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.