IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v98y2010i2p291-300.html
   My bibliography  Save this article

A new look at an old practice: Benefits from soil water accumulation in long fallows under Mediterranean conditions

Author

Listed:
  • Oliver, Yvette M.
  • Robertson, Michael J.
  • Weeks, Cameron

Abstract

The practice of long fallowing, by omitting a year of cropping, is gaining renewed focus in the low rainfall zone of the northern agriculture region of Western Australia. The impetus behind this practice change has been a reduced use of pasture breaks in cereal crop rotations, and the belief that a fallow can improve soil water accumulation and thus buffer the negative effects of dry seasons on crop yields. We evaluated the benefits of long fallowing (full stubble retention, no weed growth allowed) in a continuous wheat sequence via simulation modelling with APSIM at two rainfall locations and five soil types. The simulated benefits to long fallowing were attributable to soil water accumulation only, as the effects on soil nitrogen, diseases or weeds were not evaluated. The long-term (100 years) mean wheat yield benefit to fallowing was 0.36-0.43Â t/ha in clay, 0.20-0.23Â t/ha in sand and loam, and 0-0.03Â t/ha in shallow sand and shallow loams. Over the range of seasons simulated the response varied from -0.20 to 3.87Â t/ha in the clay and -0.48 to 2.0Â t/ha for the other soils. The accumulation of soil water and associated yield benefits occurred in 30-40% of years on better soils and only 10-20% on poorer soils. For the loam soil, the majority of the yield increases occurred when the growing-season (May-September) rainfall following the fallow was low ( 30Â mm), although yield increase did occur with other combinations of growing-season rainfall and soil water. Over several years of a crop sequence involving fallow and wheat, the benefits from long fallowing due to greater soil water accumulation did not offset yield lost from omitting years from crop production, although the coefficient of variation for inter-annual farm grain production was reduced, particularly on clay soils during the 1998-2007 decade of below-average rainfall. We conclude that under future drying climates in Western Australia, fallowing may have a role to play in buffering the effects of enhanced inter-annual variability in rainfall. Investigations are required on the management of fallows, and management of subsequent crops (i.e. sowing earlier and crop density) so as to maximise yield benefits to subsequent crops while maintaining groundcover to prevent soil erosion.

Suggested Citation

  • Oliver, Yvette M. & Robertson, Michael J. & Weeks, Cameron, 2010. "A new look at an old practice: Benefits from soil water accumulation in long fallows under Mediterranean conditions," Agricultural Water Management, Elsevier, vol. 98(2), pages 291-300, December.
  • Handle: RePEc:eee:agiwat:v:98:y:2010:i:2:p:291-300
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378-3774(10)00291-X
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Fulco Ludwig & Stephen Milroy & Senthold Asseng, 2009. "Impacts of recent climate change on wheat production systems in Western Australia," Climatic Change, Springer, vol. 92(3), pages 495-517, February.
    2. Probert, M. E. & Dimes, J. P. & Keating, B. A. & Dalal, R. C. & Strong, W. M., 1998. "APSIM's water and nitrogen modules and simulation of the dynamics of water and nitrogen in fallow systems," Agricultural Systems, Elsevier, vol. 56(1), pages 1-28, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Asseng, Senthold & Thomas, Dean & McIntosh, Peter & Alves, Oscar & Khimashia, Nirav, 2012. "Managing mixed wheat–sheep farms with a seasonal forecast," Agricultural Systems, Elsevier, vol. 113(C), pages 50-56.
    2. Cann, David J. & Hunt, James R. & Malcolm, Bill, 2020. "Long fallows can maintain whole-farm profit and reduce risk in semi-arid south-eastern Australia," Agricultural Systems, Elsevier, vol. 178(C).
    3. Ibrahim M. A. Soliman, 2019. "Forecasting Model of Wheat Yield in Relation to Rainfall Variability in North Africa Countries," International Journal of Food and Beverage Manufacturing and Business Models (IJFBMBM), IGI Global, vol. 4(2), pages 1-17, July.
    4. Chen, Chao & Fletcher, Andrew & Ota, Noboru & Oliver, Yvette & Lawes, Roger, 2023. "Integrating long fallow into wheat-based cropping systems in Western Australia: Spatial pattern of yield and economic responses," Agricultural Systems, Elsevier, vol. 204(C).
    5. Yang, Qi & Zhu, Yueji & Liu, Ling & Wang, Fang, 2021. "Land tenure stability and adoption intensity of sustainable agricultural practices: Evidence from banana farmers in China," 2021 Conference, August 17-31, 2021, Virtual 315254, International Association of Agricultural Economists.
    6. Chen, Xin & Jiang, Li & Zhang, Guoliang & Meng, Lijun & Pan, Zhihua & Lun, Fei & An, Pingli, 2021. "Green-depressing cropping system: A referential land use practice for fallow to ensure a harmonious human-land relationship in the farming-pastoral ecotone of northern China," Land Use Policy, Elsevier, vol. 100(C).
    7. López-Vicente, M. & Quijano, L. & Navas, A., 2015. "Spatial patterns and stability of topsoil water content in a rainfed fallow cereal field and Calcisol-type soil," Agricultural Water Management, Elsevier, vol. 161(C), pages 41-52.
    8. Piotr Jarosław Żarczyński & Sławomir Józef Krzebietke & Stanisław Sienkiewicz & Jadwiga Wierzbowska, 2023. "The Role of Fallows in Sustainable Development," Agriculture, MDPI, vol. 13(12), pages 1-19, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Andrew L. Fletcher & Chao Chen & Noboru Ota & Roger A. Lawes & Yvette M. Oliver, 2020. "Has historic climate change affected the spatial distribution of water-limited wheat yield across Western Australia?," Climatic Change, Springer, vol. 159(3), pages 347-364, April.
    2. El-Naggar, A.G. & Hedley, C.B. & Horne, D. & Roudier, P. & Clothier, B.E., 2020. "Soil sensing technology improves application of irrigation water," Agricultural Water Management, Elsevier, vol. 228(C).
    3. Thamo, Tas & Addai, Donkor & Kragt, Marit E. & Kingwell, Ross S. & Pannell, David J. & Robertson, Michael J., 2019. "Climate change reduces the mitigation obtainable from sequestration in an Australian farming system," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 63(4), October.
    4. Senthold Asseng & David Pannell, 2013. "Adapting dryland agriculture to climate change: Farming implications and research and development needs in Western Australia," Climatic Change, Springer, vol. 118(2), pages 167-181, May.
    5. Xingguo Mo & Ruiping Guo & Suxia Liu & Zhonghui Lin & Shi Hu, 2013. "Impacts of climate change on crop evapotranspiration with ensemble GCM projections in the North China Plain," Climatic Change, Springer, vol. 120(1), pages 299-312, September.
    6. Ahmad, Munir & Nawaz, Muhammad & Iqbal, Muhammad & Javed, Sajid, 2014. "Analysing the Impact of Climate Change on Rice Productivity in Pakistan," MPRA Paper 72861, University Library of Munich, Germany.
    7. A. Potgieter & H. Meinke & A. Doherty & V. Sadras & G. Hammer & S. Crimp & D. Rodriguez, 2013. "Spatial impact of projected changes in rainfall and temperature on wheat yields in Australia," Climatic Change, Springer, vol. 117(1), pages 163-179, March.
    8. He, Qinsi & Liu, De Li & Wang, Bin & Li, Linchao & Cowie, Annette & Simmons, Aaron & Zhou, Hongxu & Tian, Qi & Li, Sien & Li, Yi & Liu, Ke & Yan, Haoliang & Harrison, Matthew Tom & Feng, Puyu & Waters, 2022. "Identifying effective agricultural management practices for climate change adaptation and mitigation: A win-win strategy in South-Eastern Australia," Agricultural Systems, Elsevier, vol. 203(C).
    9. Dobes Leo & Jotzo Frank & Stern David I., 2014. "The Economics of Global Climate Change: A Historical Literature Review," Review of Economics, De Gruyter, vol. 65(3), pages 281-320, December.
    10. Anwar, Muhuddin Rajin & Liu, De Li & Farquharson, Robert & Macadam, Ian & Abadi, Amir & Finlayson, John & Wang, Bin & Ramilan, Thiagarajah, 2015. "Climate change impacts on phenology and yields of five broadacre crops at four climatologically distinct locations in Australia," Agricultural Systems, Elsevier, vol. 132(C), pages 133-144.
    11. Thomas, N., 2021. "Alternative Crop Management Methods to Increase Crop Productivity and Farmer Utility," 2021 Conference, August 17-31, 2021, Virtual 315042, International Association of Agricultural Economists.
    12. Grotelüschen, Kristina & Gaydon, Donald S. & Langensiepen, Matthias & Ziegler, Susanne & Kwesiga, Julius & Senthilkumar, Kalimuthu & Whitbread, Anthony M. & Becker, Mathias, 2021. "Assessing the effects of management and hydro-edaphic conditions on rice in contrasting East African wetlands using experimental and modelling approaches," Agricultural Water Management, Elsevier, vol. 258(C).
    13. Marcos Jiménez Martínez & Christine Fürst, 2021. "Simulating the Capacity of Rainfed Food Crop Species to Meet Social Demands in Sudanian Savanna Agro-Ecologies," Land, MDPI, vol. 10(8), pages 1-28, August.
    14. Yang, Xuan & Zheng, Lina & Yang, Qian & Wang, Zikui & Cui, Song & Shen, Yuying, 2018. "Modelling the effects of conservation tillage on crop water productivity, soil water dynamics and evapotranspiration of a maize-winter wheat-soybean rotation system on the Loess Plateau of China using," Agricultural Systems, Elsevier, vol. 166(C), pages 111-123.
    15. Farquharson, Robert J. & Cacho, Oscar J. & Mullen, John D., 2005. "An economic approach to soil fertility management for wheat production in New South Wales and Queensland," 2005 Conference (49th), February 9-11, 2005, Coff's Harbour, Australia 137866, Australian Agricultural and Resource Economics Society.
    16. van Oort, P.A.J. & Wang, G. & Vos, J. & Meinke, H. & Li, B.G. & Huang, J.K. & van der Werf, W., 2016. "Towards groundwater neutral cropping systems in the Alluvial Fans of the North China Plain," Agricultural Water Management, Elsevier, vol. 165(C), pages 131-140.
    17. Chauhan, Yashvir S., 2010. "Potential productivity and water requirements of maize-peanut rotations in Australian semi-arid tropical environments--A crop simulation study," Agricultural Water Management, Elsevier, vol. 97(3), pages 457-464, March.
    18. Asseng, S. & Dray, A. & Perez, P. & Su, X., 2010. "Rainfall–human–spatial interactions in a salinity-prone agricultural region of the Western Australian wheat-belt," Ecological Modelling, Elsevier, vol. 221(5), pages 812-824.
    19. Dumbrell, Nikki P. & Kragt, Marit E. & Biggs, Jody & Meier, Elizabeth & Thorburn, Peter, 2015. "Climate change abatement and farm profitability analyses across agricultural environments," Working Papers 225674, University of Western Australia, School of Agricultural and Resource Economics.
    20. Kodur, S., 2017. "Improving the prediction of soil evaporation for different soil types under dryland cropping," Agricultural Water Management, Elsevier, vol. 193(C), pages 131-141.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:98:y:2010:i:2:p:291-300. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.