IDEAS home Printed from https://ideas.repec.org/a/spr/cejnor/v29y2021i1d10.1007_s10100-019-00625-0.html
   My bibliography  Save this article

A metaheuristic algorithm and structured analysis for the Line-haul Feeder Vehicle Routing Problem with Time Windows

Author

Listed:
  • Christian Brandstätter

    (University of Graz)

Abstract

Synchronisation in vehicle routing is a rather new field of research and naturally new problems arise. One of these problems is the Line-haul Feeder Vehicle Routing Problem (LFVRP). It uses a fleet of small and large vehicles to serve two types of customers. The first type provides additional parking space and can be visited by both vehicle classes. The second type can only be visited by the small vehicle class as these customers provide only limited parking space. The main characteristic of the small vehicle class is the limited capacity. To overcome this particular disadvantage, the small vehicles can use the large vehicles as virtual depots. In other words, a small and large vehicle can meet at a parking lot or at a customer with enough space (type-1 customer) and perform a transfer of goods. For a successful reloading operation, both vehicles must be present at the same place at the same time. Thus, both vehicle tours must be synchronized. After using the large vehicle as virtual depot, the small vehicle can proceed immediately afterwards because it does not need to go back to the physical depot. Consequently, less time and distance is required which results in a reduction of the overall costs. The advantage of the LFVRP over classical variants of the Vehicle Routing Problem has been shown in previous papers. Yet, customer time windows have been neglected so far and as time windows play an important role in vehicle routing research, they need to be addressed properly. Therefore, we aim to close this gap by introducing the Line-haul Feeder Vehicle Routing Problem with Time Windows (LFVRPTW). We discuss the complexity of customer time windows for the LFVRPTW and adopt the previously introduced algorithm for the LFVRP. Furthermore, we provide a thorough computational analysis on the impact of different time window characteristics and show the advantage of the LFVRPTW over other variants of the Vehicle Routing Problem with Time Windows.

Suggested Citation

  • Christian Brandstätter, 2021. "A metaheuristic algorithm and structured analysis for the Line-haul Feeder Vehicle Routing Problem with Time Windows," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 29(1), pages 247-289, March.
  • Handle: RePEc:spr:cejnor:v:29:y:2021:i:1:d:10.1007_s10100-019-00625-0
    DOI: 10.1007/s10100-019-00625-0
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10100-019-00625-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10100-019-00625-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Grangier, Philippe & Gendreau, Michel & Lehuédé, Fabien & Rousseau, Louis-Martin, 2016. "An adaptive large neighborhood search for the two-echelon multiple-trip vehicle routing problem with satellite synchronization," European Journal of Operational Research, Elsevier, vol. 254(1), pages 80-91.
    2. F-H Liu & S-Y Shen, 1999. "The fleet size and mix vehicle routing problem with time windows," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 50(7), pages 721-732, July.
    3. Diego Cattaruzza & Nabil Absi & Dominique Feillet, 2016. "The Multi-Trip Vehicle Routing Problem with Time Windows and Release Dates," Transportation Science, INFORMS, vol. 50(2), pages 676-693, May.
    4. Francesco P. Deflorio & Jesus Gonzalez-Feliu & Guido Perboli & Roberto Tadei, 2012. "The Influence of Time Windows on the Costs of Urban Freight Distribution Services in City Logistics Applications," Post-Print halshs-00736428, HAL.
    5. Subramanian, Anand & Penna, Puca Huachi Vaz & Uchoa, Eduardo & Ochi, Luiz Satoru, 2012. "A hybrid algorithm for the Heterogeneous Fleet Vehicle Routing Problem," European Journal of Operational Research, Elsevier, vol. 221(2), pages 285-295.
    6. Marius M. Solomon, 1987. "Algorithms for the Vehicle Routing and Scheduling Problems with Time Window Constraints," Operations Research, INFORMS, vol. 35(2), pages 254-265, April.
    7. Koç, Çağrı & Bektaş, Tolga & Jabali, Ola & Laporte, Gilbert, 2016. "Thirty years of heterogeneous vehicle routing," European Journal of Operational Research, Elsevier, vol. 249(1), pages 1-21.
    8. G. Dantzig & R. Fulkerson & S. Johnson, 1954. "Solution of a Large-Scale Traveling-Salesman Problem," Operations Research, INFORMS, vol. 2(4), pages 393-410, November.
    9. François, Véronique & Arda, Yasemin & Crama, Yves & Laporte, Gilbert, 2016. "Large neighborhood search for multi-trip vehicle routing," European Journal of Operational Research, Elsevier, vol. 255(2), pages 422-441.
    10. Gilbert Laporte, 2009. "Fifty Years of Vehicle Routing," Transportation Science, INFORMS, vol. 43(4), pages 408-416, November.
    11. J-F Cordeau & M Gendreau & G Laporte & J-Y Potvin & F Semet, 2002. "A guide to vehicle routing heuristics," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 53(5), pages 512-522, May.
    12. Cattaruzza, Diego & Absi, Nabil & Feillet, Dominique & Vidal, Thibaut, 2014. "A memetic algorithm for the Multi Trip Vehicle Routing Problem," European Journal of Operational Research, Elsevier, vol. 236(3), pages 833-848.
    13. David Pisinger & Stefan Ropke, 2010. "Large Neighborhood Search," International Series in Operations Research & Management Science, in: Michel Gendreau & Jean-Yves Potvin (ed.), Handbook of Metaheuristics, chapter 0, pages 399-419, Springer.
    14. Fred Glover, 1989. "Tabu Search---Part I," INFORMS Journal on Computing, INFORMS, vol. 1(3), pages 190-206, August.
    15. Diego Cattaruzza & Nabil Absi & Dominique Feillet, 2016. "Vehicle routing problems with multiple trips," 4OR, Springer, vol. 14(3), pages 223-259, September.
    16. Michael Drexl, 2012. "Synchronization in Vehicle Routing---A Survey of VRPs with Multiple Synchronization Constraints," Transportation Science, INFORMS, vol. 46(3), pages 297-316, August.
    17. Kritikos, Manolis N. & Ioannou, George, 2013. "The heterogeneous fleet vehicle routing problem with overloads and time windows," International Journal of Production Economics, Elsevier, vol. 144(1), pages 68-75.
    18. Delorme, Maxence & Iori, Manuel & Martello, Silvano, 2016. "Bin packing and cutting stock problems: Mathematical models and exact algorithms," European Journal of Operational Research, Elsevier, vol. 255(1), pages 1-20.
    19. Alexandra Anderluh & Vera C. Hemmelmayr & Pamela C. Nolz, 2017. "Synchronizing vans and cargo bikes in a city distribution network," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 25(2), pages 345-376, June.
    20. Sanjeeb Dash & Oktay Günlük & Andrea Lodi & Andrea Tramontani, 2012. "A Time Bucket Formulation for the Traveling Salesman Problem with Time Windows," INFORMS Journal on Computing, INFORMS, vol. 24(1), pages 132-147, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Brandstätter, Christian & Reimann, Marc, 2018. "The Line-haul Feeder Vehicle Routing Problem: Mathematical model formulation and heuristic approaches," European Journal of Operational Research, Elsevier, vol. 270(1), pages 157-170.
    2. Vidal, Thibaut & Crainic, Teodor Gabriel & Gendreau, Michel & Prins, Christian, 2013. "Heuristics for multi-attribute vehicle routing problems: A survey and synthesis," European Journal of Operational Research, Elsevier, vol. 231(1), pages 1-21.
    3. He, Dongdong & Ceder, Avishai (Avi) & Zhang, Wenyi & Guan, Wei & Qi, Geqi, 2023. "Optimization of a rural bus service integrated with e-commerce deliveries guided by a new sustainable policy in China," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 172(C).
    4. Wang, Zheng, 2018. "Delivering meals for multiple suppliers: Exclusive or sharing logistics service," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 118(C), pages 496-512.
    5. Vidal, Thibaut & Laporte, Gilbert & Matl, Piotr, 2020. "A concise guide to existing and emerging vehicle routing problem variants," European Journal of Operational Research, Elsevier, vol. 286(2), pages 401-416.
    6. Lai, David S.W. & Caliskan Demirag, Ozgun & Leung, Janny M.Y., 2016. "A tabu search heuristic for the heterogeneous vehicle routing problem on a multigraph," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 86(C), pages 32-52.
    7. Koç, Çağrı & Bektaş, Tolga & Jabali, Ola & Laporte, Gilbert, 2016. "Thirty years of heterogeneous vehicle routing," European Journal of Operational Research, Elsevier, vol. 249(1), pages 1-21.
    8. Raeesi, Ramin & Zografos, Konstantinos G., 2020. "The electric vehicle routing problem with time windows and synchronised mobile battery swapping," Transportation Research Part B: Methodological, Elsevier, vol. 140(C), pages 101-129.
    9. Frey, Christian M.M. & Jungwirth, Alexander & Frey, Markus & Kolisch, Rainer, 2023. "The vehicle routing problem with time windows and flexible delivery locations," European Journal of Operational Research, Elsevier, vol. 308(3), pages 1142-1159.
    10. Michael Drexl, 2018. "On the One-to-One Pickup-and-Delivery Problem with Time Windows and Trailers," Working Papers 1816, Gutenberg School of Management and Economics, Johannes Gutenberg-Universität Mainz.
    11. Diego Cattaruzza & Nabil Absi & Dominique Feillet, 2018. "Vehicle routing problems with multiple trips," Annals of Operations Research, Springer, vol. 271(1), pages 127-159, December.
    12. Schönberger, Jörn, 2017. "Implicit time windows and multi-commodity mixed-fleet vehicle routing," Discussion Papers 1/2017, Technische Universität Dresden, "Friedrich List" Faculty of Transport and Traffic Sciences, Institute of Transport and Economics.
    13. Jose Carlos Molina & Ignacio Eguia & Jesus Racero, 2018. "An optimization approach for designing routes in metrological control services: a case study," Flexible Services and Manufacturing Journal, Springer, vol. 30(4), pages 924-952, December.
    14. Li, Hongqi & Chen, Jun & Wang, Feilong & Bai, Ming, 2021. "Ground-vehicle and unmanned-aerial-vehicle routing problems from two-echelon scheme perspective: A review," European Journal of Operational Research, Elsevier, vol. 294(3), pages 1078-1095.
    15. A. Mor & M. G. Speranza, 2022. "Vehicle routing problems over time: a survey," Annals of Operations Research, Springer, vol. 314(1), pages 255-275, July.
    16. Michael Drexl, 2021. "On the one-to-one pickup-and-delivery problem with time windows and trailers," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 29(3), pages 1115-1162, September.
    17. João L. V. Manguino & Débora P. Ronconi, 2022. "Step cost functions in a fleet size and mix vehicle routing problem with time windows," Annals of Operations Research, Springer, vol. 316(2), pages 1013-1038, September.
    18. Dumez, Dorian & Tilk, Christian & Irnich, Stefan & Lehuédé, Fabien & Olkis, Katharina & Péton, Olivier, 2023. "A matheuristic for a 2-echelon vehicle routing problem with capacitated satellites and reverse flows," European Journal of Operational Research, Elsevier, vol. 305(1), pages 64-84.
    19. de Lima, Vinícius L. & Alves, Cláudio & Clautiaux, François & Iori, Manuel & Valério de Carvalho, José M., 2022. "Arc flow formulations based on dynamic programming: Theoretical foundations and applications," European Journal of Operational Research, Elsevier, vol. 296(1), pages 3-21.
    20. Cheng, Chun & Adulyasak, Yossiri & Rousseau, Louis-Martin, 2020. "Drone routing with energy function: Formulation and exact algorithm," Transportation Research Part B: Methodological, Elsevier, vol. 139(C), pages 364-387.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:cejnor:v:29:y:2021:i:1:d:10.1007_s10100-019-00625-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.