IDEAS home Printed from https://ideas.repec.org/a/spr/aodasc/v7y2020i1d10.1007_s40745-019-00197-5.html
   My bibliography  Save this article

Bivariate Weibull Distribution: Properties and Different Methods of Estimation

Author

Listed:
  • Ehab Mohamed Almetwally

    (Cairo University)

  • Hiba Zeyada Muhammed

    (Cairo University)

  • El-Sayed A. El-Sherpieny

    (Cairo University)

Abstract

The bivariate Weibull distribution is an important lifetime distribution in survival analysis. In this paper, Farlie–Gumbel–Morgenstern (FGM) copula and Weibull marginal distribution are used for creating bivariate distribution which is called FGM bivariate Weibull (FGMBW) distribution. FGMBW distribution is used for describing bivariate data that have weak correlation between variables in lifetime data. It is a good alternative to bivariate several lifetime distributions for modeling real-valued data in application. Some properties of the FGMBW distribution are obtained such as product moment, skewness, kurtosis, moment generation function, reliability function and hazard function. Three different estimation methods for parameters estimation are discussed for FGMBW distribution namely; maximum likelihood estimation, inference function for margins method and semi-parametric method. To evaluate the performance of the estimators, a Monte Carlo simulations study is conducted to compare the preferences between estimation methods. Also, a real data set is introduced, analyzed to investigate the model and useful results are obtained for illustrative purposes.

Suggested Citation

  • Ehab Mohamed Almetwally & Hiba Zeyada Muhammed & El-Sayed A. El-Sherpieny, 2020. "Bivariate Weibull Distribution: Properties and Different Methods of Estimation," Annals of Data Science, Springer, vol. 7(1), pages 163-193, March.
  • Handle: RePEc:spr:aodasc:v:7:y:2020:i:1:d:10.1007_s40745-019-00197-5
    DOI: 10.1007/s40745-019-00197-5
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s40745-019-00197-5
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s40745-019-00197-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kundu, Debasis & Gupta, Arjun K., 2013. "Bayes estimation for the Marshall–Olkin bivariate Weibull distribution," Computational Statistics & Data Analysis, Elsevier, vol. 57(1), pages 271-281.
    2. Kundu, Debasis & Dey, Arabin Kumar, 2009. "Estimating the parameters of the Marshall-Olkin bivariate Weibull distribution by EM algorithm," Computational Statistics & Data Analysis, Elsevier, vol. 53(4), pages 956-965, February.
    3. Silvia Angela Osmetti & Paola Maddalena Chiodini, 2011. "A method of moments to estimate bivariate survival functions: the copula approach," Statistica, Department of Statistics, University of Bologna, vol. 71(4), pages 469-488.
    4. Gregor Weiß, 2011. "Copula parameter estimation by maximum-likelihood and minimum-distance estimators: a simulation study," Computational Statistics, Springer, vol. 26(1), pages 31-54, March.
    5. Joe, Harry, 2005. "Asymptotic efficiency of the two-stage estimation method for copula-based models," Journal of Multivariate Analysis, Elsevier, vol. 94(2), pages 401-419, June.
    6. repec:bot:journl:v:71:y:2011:i:4:p:469-488 is not listed on IDEAS
    7. Chen, Xiaohong, 2007. "Large Sample Sieve Estimation of Semi-Nonparametric Models," Handbook of Econometrics, in: J.J. Heckman & E.E. Leamer (ed.), Handbook of Econometrics, edition 1, volume 6, chapter 76, Elsevier.
    8. Kim, Gunky & Silvapulle, Mervyn J. & Silvapulle, Paramsothy, 2007. "Comparison of semiparametric and parametric methods for estimating copulas," Computational Statistics & Data Analysis, Elsevier, vol. 51(6), pages 2836-2850, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dina A. Ramadan & Ehab M. Almetwally & Ahlam H. Tolba, 2023. "Statistical Inference to the Parameter of the Akshaya Distribution under Competing Risks Data with Application HIV Infection to AIDS," Annals of Data Science, Springer, vol. 10(6), pages 1499-1525, December.
    2. Hanan Haj Ahmad & Ehab M. Almetwally & Dina A. Ramadan, 2023. "Investigating the Relationship between Processor and Memory Reliability in Data Science: A Bivariate Model Approach," Mathematics, MDPI, vol. 11(9), pages 1-23, May.
    3. Hiba Z. Muhammed & Ehab M. Almetwally, 2023. "Bayesian and Non-Bayesian Estimation for the Bivariate Inverse Weibull Distribution Under Progressive Type-II Censoring," Annals of Data Science, Springer, vol. 10(2), pages 481-512, April.
    4. Roger Tovar-Falón & Guillermo Martínez-Flórez & Luis Páez-Martínez, 2023. "Bivariate Unit-Weibull Distribution: Properties and Inference," Mathematics, MDPI, vol. 11(17), pages 1-19, September.
    5. Ehab M. Almetwally, 2022. "The Odd Weibull Inverse Topp–Leone Distribution with Applications to COVID-19 Data," Annals of Data Science, Springer, vol. 9(1), pages 121-140, February.
    6. El-Sayed A. El-Sherpieny & Ehab M. Almetwally & Hiba Z. Muhammed, 2023. "Bayesian and Non-Bayesian Estimation for the Parameter of Bivariate Generalized Rayleigh Distribution Based on Clayton Copula under Progressive Type-II Censoring with Random Removal," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 85(2), pages 1205-1242, August.
    7. Mohamed Ibrahim & Khaoula Aidi & M. Masoom Ali & Haitham M. Yousof, 2023. "A Novel Test Statistic for Right Censored Validity under a new Chen extension with Applications in Reliability and Medicine," Annals of Data Science, Springer, vol. 10(5), pages 1285-1299, October.
    8. Abdul Ghaniyyu Abubakari & Claudio Chadli Kandza-Tadi & Edwin Moyo, 2023. "Modified Beta Inverse Flexible Weibull Extension Distribution," Annals of Data Science, Springer, vol. 10(3), pages 589-617, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Calabrese, Raffaella & Osmetti, Silvia Angela, 2019. "A new approach to measure systemic risk: A bivariate copula model for dependent censored data," European Journal of Operational Research, Elsevier, vol. 279(3), pages 1053-1064.
    2. Bouezmarni, T. & Rombouts, J.V.K., 2009. "Semiparametric multivariate density estimation for positive data using copulas," Computational Statistics & Data Analysis, Elsevier, vol. 53(6), pages 2040-2054, April.
    3. Sukjin Han & Sungwon Lee, 2019. "Estimation in a generalization of bivariate probit models with dummy endogenous regressors," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 34(6), pages 994-1015, September.
    4. Hanan Haj Ahmad & Ehab M. Almetwally & Dina A. Ramadan, 2023. "Investigating the Relationship between Processor and Memory Reliability in Data Science: A Bivariate Model Approach," Mathematics, MDPI, vol. 11(9), pages 1-23, May.
    5. Bouezmarni Taoufik & Ghouch El & Taamouti Abderrahim, 2013. "Bernstein estimator for unbounded copula densities," Statistics & Risk Modeling, De Gruyter, vol. 30(4), pages 343-360, December.
    6. Ko, Vinnie & Hjort, Nils Lid, 2019. "Model robust inference with two-stage maximum likelihood estimation for copulas," Journal of Multivariate Analysis, Elsevier, vol. 171(C), pages 362-381.
    7. Zeng, Zhiguo & Barros, Anne & Coit, David, 2023. "Dependent failure behavior modeling for risk and reliability: A systematic and critical literature review," Reliability Engineering and System Safety, Elsevier, vol. 239(C).
    8. Sabrina Mulinacci, 2018. "Archimedean-based Marshall-Olkin Distributions and Related Dependence Structures," Methodology and Computing in Applied Probability, Springer, vol. 20(1), pages 205-236, March.
    9. Raffaella Calabrese & Silvia Osmetti, 2014. "Modelling cross-border systemic risk in the European banking sector: a copula approach," Papers 1411.1348, arXiv.org.
    10. Genest, Christian & Rémillard, Bruno & Beaudoin, David, 2009. "Goodness-of-fit tests for copulas: A review and a power study," Insurance: Mathematics and Economics, Elsevier, vol. 44(2), pages 199-213, April.
    11. Zhang, Kong-Sheng & Lin, Jin-Guan & Xu, Pei-Rong, 2016. "A new class of copulas involving geometric distribution: Estimation and applications," Insurance: Mathematics and Economics, Elsevier, vol. 66(C), pages 1-10.
    12. El-Sayed A. El-Sherpieny & Ehab M. Almetwally & Hiba Z. Muhammed, 2023. "Bayesian and Non-Bayesian Estimation for the Parameter of Bivariate Generalized Rayleigh Distribution Based on Clayton Copula under Progressive Type-II Censoring with Random Removal," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 85(2), pages 1205-1242, August.
    13. Kojadinovic, Ivan & Yan, Jun, 2010. "Comparison of three semiparametric methods for estimating dependence parameters in copula models," Insurance: Mathematics and Economics, Elsevier, vol. 47(1), pages 52-63, August.
    14. Di Bernardino Elena & Rullière Didier, 2013. "On certain transformations of Archimedean copulas: Application to the non-parametric estimation of their generators," Dependence Modeling, De Gruyter, vol. 1, pages 1-36, October.
    15. Manner, Hans & Alavi Fard, Farzad & Pourkhanali, Armin & Tafakori, Laleh, 2019. "Forecasting the joint distribution of Australian electricity prices using dynamic vine copulae," Energy Economics, Elsevier, vol. 78(C), pages 143-164.
    16. Knyazev, Alexander & Lepekhin, Oleg & Shemyakin, Arkady, 2016. "Joint distribution of stock indices: Methodological aspects of construction and selection of copula models," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 42, pages 30-53.
    17. Rogelio Salinas-Gutiérrez & Arturo Hernández-Aguirre & Enrique Villa-Diharce, 2014. "Copula selection for graphical models in continuous Estimation of Distribution Algorithms," Computational Statistics, Springer, vol. 29(3), pages 685-713, June.
    18. Kundu, Debasis & Gupta, Arjun K., 2014. "On bivariate Weibull-Geometric distribution," Journal of Multivariate Analysis, Elsevier, vol. 123(C), pages 19-29.
    19. Rakesh Ranjan & Vastoshpati Shastri, 2019. "Posterior and predictive inferences for Marshall Olkin bivariate Weibull distribution via Markov chain Monte Carlo methods," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 10(6), pages 1535-1543, December.
    20. Almeida, Carlos & Czado, Claudia, 2012. "Efficient Bayesian inference for stochastic time-varying copula models," Computational Statistics & Data Analysis, Elsevier, vol. 56(6), pages 1511-1527.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:aodasc:v:7:y:2020:i:1:d:10.1007_s40745-019-00197-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.